Laboratory experiments are important pedagogical tools in engineering courses. Restrictions related to the COVID-19 pandemic made it very difficult or impossible for laboratory classes to take place, resulting on a fast transition to simulation as an approach to guarantee the effectiveness of teaching. Simulation environments are powerful tools that can be adopted for remote classes and self-study. With these tools, students can perform experiments and, in some cases, make use of the laboratory facilities from outside of the University. This paper proposes and describes two free tools developed during the COVID-19 pandemic lock-down that allowed students to work from home, namely a set of simulation experiments and a Hardware-in-the-loop simulator, accessible 24/7. Two approaches in Python and C languages are presented, both in the context of Robotics courses for Engineering students. Successful results and student feedback indicate the effectiveness of the proposed approaches in institutions in Portugal and in the Netherlands.
LINK
The installation of facilities replicating the realworld condition is often required for carrying out meaningful tests on new devices and for collecting data with the aim to create realistic device model. However, these facilities require huge investments, as well as areas where they can be properly installed. In this paper, we present a test infrastructure exploiting the concept of Remote Power Hardware-In-the-Loop (RPHIL), applied for characterizing the performances of a 8kW Proton Exchange Membrane (PEM) electrolyser installed at the Hanze University of Applied Sciences in Groningen (The Netherlands). The electrolyser is subjected to different test conditions imposed both locally and remotely. The results show that this measurement procedure is effective and can open new perspectives in the way to share and exploit the existing research infrastructure in Europe
DOCUMENT
New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however supporting decision making processes to select best solutions in terms of performance and efficient following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behavior and impact of newly developed devices or algorithms in different pre-defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.
DOCUMENT
The project STORE&GO aims to investigate all the aspects regarding the integration of large-scale Power-to-Gas (PtG) at European level, by exploiting it as means for long term storage. One of the aspects that should be properly addressed is the beneficial impact that the integration of PtG plants may have on the electricity system.In the project framework, WP6 devoted its activities to investigate different aspects of the integration of PtG in the electricity grid, with the previous delivered reports.This deliverable focused in particular on how integrate the information about the facilities replicating the real world condition into a simulation environment. For doing this, the concept of remote Physical Hardware-in-the-Loop (PHIL) has been used and exploit.Remote simulation with physical hardware appears to be an effective means for investigating new technologies for energy transition, with the purpose of solving the issues related to the introduction of new Renewable Energy Sources (RES) into the electricity system. These solutions are making the overall energy systems to be investigated much more complex than the traditional ones, introducingnew challenges to the research. In fact:• the newly integrated technologies deal with different energy vectors and sectors, thus• requiring interoperability and multidisciplinary analysis;• the systems to be implemented often are large-scale energy systems leading to enormously complicated simulation models;• the facilities for carrying out the experiments require huge investments as well as suitable areas where to be properly installed.This may lead to the fact that a single laboratory with limited expertise, hardware/software facilities and available data has not the ability to secure satisfactory outcomes. The solution is the share of existing research infrastructures, by virtually joining different distant laboratories or facilities.This results in improvement of simulation capabilities for large-scale systems by decoupling into subsystems to be run on distant targets avoidance of replication of already existing facilities by exploiting remote hardware in the loop concept for testing of remote devices.Also confidential information of one lab, whose sharing may be either not allowed or requiring long administrative authorization procedures, can be kept confidential by simulating models locally and exchanging with the partners only proper data and simulation results through the co-simulation medium.Thanks to the realized method it is possible to real time analyse renewable devices at remotepower plants and place them in the loop of a local network simulation.The results reported show that the architecture developed is strong enough for being applied also atnew renewable power plants. This opens the possibility to use the data for research purposed, butalso to act in remote on the infrastructure in case of particular test (for example the acceptance test).
DOCUMENT
New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however, supporting decision making processes to select best solutions in terms of performance and efficiently following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behaviour and impact of newly developed devices or algorithms in different pre- defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.This report is about the development and realisation of some major tools and reliable methods to calculate risks and opportunities for integrating of new energy resources into the European electricity grid. Hanze University Groningen and Politecnico di Torino worked together within the STORE&GO project sharing laboratories, knowledge, hardware facilities and researchers for the realisation of the characterisation and mathematical modelling of renewable resources. Needed to realize a stable and reliable environment for remote physical hardware in the loop simulations.For this realisation we started with the local characterisation of a PV-Field and a PEM electrolyser at Entrance Groningen by logging and measuring the electric behaviour and specific device parameters to integrate and convert these into working mathematical models of a PV-Field and electrolyser prosumer. After testing and evaluating these models by comparing the results with the real-time measurements, these test and modelling is also realised from the remote laboratory in Torino. To achieve dynamical physical hardware we also realised dynamic mathematical model(s) with real-time functionality to interact directly with the remote electrolyser. To connect both the laboratories with full duplex communication functionalities between physical hardware and models we have also realized a network which is able to share network resources on both local and remote sites.
DOCUMENT
Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new approach with a combination of high performance software and intelligent systems. Other case studies have used hybrid and intelligent systems in software before. However, they were mainly used to improve the logistic processes and are not commonly used within the hardware control loop. This paper introduces a case study on flexible and hybrid software architecture, which uses prototype manufacturing machines called equiplets. These systems should be applicable for the industry and are able to dynamically adapt to changes in the product as well as changes in the manufacturing systems. This is done by creating self-configurable machines which use intelligent control software, based on agent technology and computer vision. The requirements and resulting technologies are discussed using simple reasoning and analysis, leading to a basic design of a software control system, which is based on a hybrid distributed control system
DOCUMENT
The Dutch greenhouse horticulture industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve the innovative capacity of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the program develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Finally, the paper illustrates the importance of combining enterprise, education and research in regional networks, with examples from the greenhouse horticulture sector. These networks generate economic growth and international competitiveness by acting as business accelerators.
DOCUMENT
Abstract Despite the numerous business benefits of data science, the number of data science models in production is limited. Data science model deployment presents many challenges and many organisations have little model deployment knowledge. This research studied five model deployments in a Dutch government organisation. The study revealed that as a result of model deployment a data science subprocess is added into the target business process, the model itself can be adapted, model maintenance is incorporated in the model development process and a feedback loop is established between the target business process and the model development process. These model deployment effects and the related deployment challenges are different in strategic and operational target business processes. Based on these findings, guidelines are formulated which can form a basis for future principles how to successfully deploy data science models. Organisations can use these guidelines as suggestions to solve their own model deployment challenges.
DOCUMENT
The Dutch greenhouse horticultural industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through collaboration takes up a mere 25-30% of the opportunities. The greenhouse horticulture sector is generally characterized by small scale, often family run businesses. Growers often depend on the Dutch auction system for their revenues and suppliers operate mainly independently. Horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve innovative capabilities of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the programme develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Furthermore, the paper discusses our four-year programme, whose objectives are trying to eliminate interventions that stimulate the innovative capabilities of SME's in this sector and develop instruments that are beneficial to organizations and individual entrepreneurs and help them make the step from vision to action, and from incremental to radical innovation. Finally, the paper illustrates the importance of combining enterprise, education and research in networks with a regional, national and international scope, with examples from the greenhouse horticulture sector. These networks generate economic regional and national growth and international competitiveness by acting as business accelerators.
DOCUMENT
This whitepaper explores what the impact is of the operating system (OS) of a smartphone on its lifespan, costs and environmental impact.
DOCUMENT