Purpose: This is a position paper describing the elements of an international framework for assistive techhnology provision that could guide the development of policies, systems and service delivery procedures across the world. It describes general requirements, quality criteria and possible approaches that may help to enhance the accessibility of affordable and high quality assistive technology solutions. Materials and methods: The paper is based on the experience of the authors, an analysis of the existing literature and the inputs from many colleagues in the field of assistive technology provision. It includes the results of discussions of an earlier version of the paper during an international conference on the topic in August 2017. Results and conclusion: The paper ends with the recommendation to develop an international standard for assistive technology provision. Such a standard can have a major impact on the accessibility of AT for people with disabilities. The paper outlines some the key elements to be included in a standard.
The aim of this review was to explore which factors influence nurses' adoption of information and communication technology. A systematic review was conducted using qualitative and quantitative studies. The authors performed the search strategy in the databases of PubMed, CINAHL, and IEEE and included articles published between January 2011 and July 2021. This review explores the following factors: collaboration, leadership, and individual and team factors—that, according to qualitative and quantitative research, seem to influence nurses' adoption of information and communication technology. A gradual implementation process of the information and communication technology, involvement from care professionals in the implementation process, and team functioning are important factors to consider when adopting information and communication technology. In addition to these, individual factors such as age, experience, attitude, and knowledge are also influencing factors. The review suggests that collaboration is important within the implementation of information and communication technology in care and that it positively influences nurses' adoption of it. Individual factors are researched more extensively than collaboration, leadership, and team factors. Although they also appear to influence the adoption of information and communication technology, there is insufficient evidence to convincingly substantiate this.
Health care professionals have extremely busy work schedules. Unfortunately, they need to spend a lot of their time on administrative tasks, whereas they would like to devote it to helping patients, which is what they were trained for in the first place. Properly designed technology could help to lessen the burden of administration and provide more quality time with patients. In the project COUNT (Communication and Operation on the Unit Between Nurses and Technology), we are working on developing this type of technology for hospital nurses. To make sure we are developing technology that is really helpful to and usable by nurses, we involve them in co-design activities. This is a challenge in itself, similar to the reason why the project was started: nurses have very little time, and it is hard to plan activities since chances of something unexpected coming up are high. Because nurses are so engrossed in their daily activities, it is difficult for them to take some distance to think about innovations, and moreover, technology is generally not of particular interest to them. In COUNT, we have developed and applied a number of techniques to involve nurses in co-design and to stimulate them to think of possible technological innovations in their daily work. Although the techniques were primarily targeted at hospital nurses, lessons learned apply to a much wider target group of health care professionals.
LINK
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Over the last couple of years there is a growing interest in the role of the bicycle in Western urban transport systems as an alternative to car use. Cycling not only has positive environmental impacts, but also positive health effects through increased physical activity. From the observation of the Urban Intelligence team that cycling data and information was limited, we have started the development of cycleprint. Cycleprint stands for Cycle Policy Renewal and INnovation by means of tracking Technology with the objective to enable more customer friendly cycle policy.The initial objective of Cycleprint was to translate GPS data into policy relevant insights to enable customer friendly cycle policy. The online toolkit what Cycleprint has become, answers the questions about:-route choice-speeds-delays at intersections -intensities Because of the success of Cycleprint in the Netherlands the range of features is still under development. As a result of the development of Cycleprint the Dutch organized the fietstelweek. In addition to Cycleprint the Urban Intelligence team developed the cyclescan to explore the effects of cycle network enhancement. The project is developed in direct collaboration with the Provincie Noord-Brabant and Metropoolregio Eindhoven to fulfill the ambition to become cycling region of the Netherlands in 2020.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.