Objective: Gaining too much or too little weight in pregnancy (according to Institute of Medicine (IOM) guidelines) negatively affects both mother and child, but many women find it difficult to manage their gestational weight gain (GWG). Here we describe the use of the intervention mapping protocol to design ‘Come On!’, an intervention to promote adequate GWG among healthy pregnant women. Design: We used the six steps of intervention mapping: (i) needs assessment; (ii) formulation of change objectives; (iii) selection of theory-based methods and practical strategies; (iv) development of the intervention programme; (v) development of an adoption and implementation plan; and (vi) development of an evaluation plan. A consortium of users and related professionals guided the process of development. Results: As a result of the needs assessment, two goals for the intervention were formulated: (i) helping healthy pregnant women to stay within the IOM guidelines for GWG; and (ii) getting midwives to adequately support the efforts of healthy pregnant women to gain weight within the IOM guidelines. To reach these goals, change objectives and determinants influencing the change objectives were formulated. Theories used were the Transtheoretical Model, Social Cognitive Theory and the Elaboration Likelihood Model. Practical strategies to use the theories were the foundation for the development of ‘Come On!’, a comprehensive programme that included a tailored Internet programme for pregnant women, training for midwives, an information card for midwives, and a scheduled discussion between the midwife and the pregnant woman during pregnancy. The programme was pre-tested and evaluated in an effect study.
MULTIFILE
Healthy gestational weight gain (GWG) is associated with better pregnancy outcomes and with improved health in the later lives of women and babies. In this thesis the author describes the process of developing an intervention to help pregnant women reach a healthy GWG. The need for this intervention was derived from discussions with midwives, working in primary care in the Netherlands. In this introduction, the author describes the background of the larger project “Promoting Health Pregnancy”, of which this study is a part (1.2), the problem of unhealthy GWG (1.3-1.6) and offers a brief introduction to the theoretical framework of the study and to the subsequent chapters (1.7-1.9).
This chapter gives an overview on the Healthy Ageing research portfolio of the research group Lifelong Learning in Music (Hanze University of Applied Sciences Groningen, the Netherlands). Lifelong learning enables musicians to respond to the continuously changing context in which they are working nowadays, and ageing is one of the major societal changes for many western societies in the 21st century. Musicians are asked by society to contribute to healthy ageing processes, and such a contribution in turn generates possibilities for innovative musical practices with the elderly. We present a three-layered model to look at such innovative practices, which places the musical practice itself in the context of communicative characteristics of working with elderly people and in broader societal and institutional contexts. We then outline four concrete research projects: learning to play an instrument at an elderly age, creative music workshops for elderly in residential home settings, the competencies of creative music workshop leaders working with frail elderly people, and musical work with severely ill elderly people in hospitals. We describe some background values and methodological notions behind our work, and finish the article with a more extensive description of our project on Music and Dementia.
Developing and realizing an innovative concept for the Active Aging campus in two years, where students, teachers, companies, residents of surrounding Campus neighborhoods will be invited to do exercise, sports, play, meet and participate. This includes, on the one hand, providing input with regard to a mobility-friendly design from an infrastructural perspective and, on the other hand, organizing activities that contribute to Healthy Aeging of the Zernike site and the city of Groningen. It is not only about having an Active Aging campus with an iconic image, but also about the process. In the process of realization, students, teachers, researchers, companies and residents from surrounding districts will be explicitly involved. This includes hardware (physical environment / infrastructure), software (social environment) and orgware (interaction between the two).
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.
Wet and healthy peatlands have a strong natural potential to save carbon and, due to their waterbuffering capacity, play an important role in managing periods of excessive rains or droughts. Yet, inNWE regions large areas of peatlands are drained for peat mining, agriculture or forestry, whichmakes them CO2 emission sources rather than sinks. By restoring the capacity to buffer carbon andwater, BUFFER+ partners aim at climate change adaptation and mitigation in NWE regions, while atthe same time restore biodiversity and create new revenue streams.BUFFER+ involves 21 partners and 7 Associated Organisations from regions