This paper presents five design prototypes for cool urban water environments developed in the 'Really cooling water bodies in cities' (REALCOOL) project. The REALCOOL prototypes address an urgent need: urban water bodies, such as ponds or canals, are often assumed to cool down their surroundings during days with heat stress, whereas recent research shows that this is not always the case and that urban water bodies may actually have warming effects too. There are, however, indications that shading, vaporising water, and proper ventilation can keep water bodies and their surroundings cooler. Yet, it is necessary to explore how these strategies can be optimally combined and how the resulting design guidelines can be communicated to design professionals. The REALCOOL prototypes communicate the spatial layout and biometeorological effects of such combinations and assist design decisions dealing with urban water environments. The micrometeorological simulations with Envimet showed that the prototypes led to local reductions on daytime PET from 1 °C to 7 °C, upon introducing shade. Water mist and fountains were also cooling solutions. The important role of ventilation was confirmed. The paper discusses and concludes about the use of the prototypes as tools for urban design practice.
The traditional energy industry is transitioning from a centralised fossil fuel based industry to a decentralised renewable energy industry for several reasons including climate change, policy, and changing customer needs. Furthermore, renewable sources, such as wind and solar, are intermittent and unpredictable. This has implications for the business models of energy producers, such as increased mismatch between demand and supply, increased price volatility, shift in drivers of value creation. Due to the low marginal cost of production and the intermittent nature of renewables, the price volatility on the electricity markets, in particular the imbalance market, are expected to increase. However, there is potential for market parties operating in the electricity sector to profit from this development by providing flexibility to balance electricity supply and demand. Therefore, new business models are needed that can harness and exploit flexibility in a viable manner. In these business models, flexibility becomes the key driver of value creation.
Mexico transported in 2018 over 97.3 million passengers on its 77 airports in the country, from which 64 are international, with ana Amsterdam University of Applied Science (AUAS), Weesperzijde 190, 1097 DZ Amsterdam, Netherlandsaverage growth rate of 7.6% respects 2017. Particularity, Queretaro International Airport has shown a very significant growth,handling almost 95 thousand passengers in 2006 towards over one million passengers in 2018 according to Civil AviationAuthorities. Furthermore, in the last years Queretaro city and its suburbs have been developing into a strong industrial regiontogether with an aeronautical cluster; this is as an initiative of Mexican Government which gather more than 80 manufactureaeronautical enterprises such as General Electric, Bombardier, Grupo Safran and Aernova, amongst others. There is one of the Mexico transported in 2018 over 97.3 million passengers on its 77 airports in the country, from which 64 are international, with anbiggest Maintenance, Repairing and Over hall (MRO) service facilities of Latin America which belong to Aeromexico and Delta average growth rate of 7.6% respects 2017. Particularity, Queretaro International Airport has shown a very significant growth,Airlines. In addition, research, educational and training institutions supply high trained personnel to the industry. These unique handling almost 95 thousand passengers in 2006 towards over one million passengers in 2018 according to Civil Aviationcharacteristics of Queretaro airport make suitable for study, particularly an analysis of the main current and potential characteristics Authorities. Furthermore, in the last years Queretaro city and its suburbs have been developing into a strong industrial regionof the business development of the region through the growth model of the airport. Therefore, the work aims to highlight the potential together with an aeronautical cluster; this is as an initiative of Mexican Government which gather more than 80 manufactureaspects of the airport business model and the need to cope with it though an Airport Master Plan (AMP) based on a long-term aeronautical enterprises such as General Electric, Bombardier, Grupo Safran and Aernova, amongst others. There is one of thevision strategy towards 2040-2050. The approach integrates the international, national and regional trends related to aviation, and biggest Maintenance, Repairing and Over hall (MRO) service facilities of Latin America which belong to Aeromexico and Deltathe perspective of global growth as driver of connectivity for commercial and cargo aviation. It has been found that the airport has an Airlines. In addition, research, educational and training institutions supply high trained personnel to the industry. These uniqueinteresting and challenging portfolio of activities and market opportunities. Based on the economic activities in the region and the characteristics of Queretaro airport make suitable for study, particularly an analysis of the main current and potential characteristicsgood landside connectivity to Mexico City the passenger and cargo traffic at Queretaro Airport have good potential for growth of the business development of the region through the growth model of the airport. Therefore, the work aims to highlight the potentialeither via local based home carrier providing connections within Mexico and to major international destinations including long haul. aspects of the airport business model and the need to cope with it though an Airport Master Plan (AMP) based on a long-termThe airport has a solid infrastructure base, a long runway capable to accommodate almost all aircraft types for domestic and vision strategy towards 2040-2050. The approach integrates the international, national and regional trends related to aviation, andinternational traffic and cargo; MRO services, aircraft parts manufacturing facilities, an aviation university as well as the the perspective of global growth as driver of connectivity for commercial and cargo aviation. It has been found that the airport has andevelopment of commercial services for passengers and in the surrounding communities. Queretaro Airport is capable to move fast interesting and challenging portfolio of activities and market opportunities. Based on the economic activities in the region and thebased on its current portfolio of activities, facilities, and scheduled modifications of the terminal, etc. We can assume that airlines good landside connectivity to Mexico City the passenger and cargo traffic at Queretaro Airport have good potential for growthwill be looking for new opportunities to serve the Mexican market at large and the Mexico City area in particular. Dedicated airlines either via local based home carrier providing connections within Mexico and to major international destinations including long haul.marketing, to speed up development of landside commercial services (hotel, landside transportation to Mexico City) will position The airport has a solid infrastructure base, a long runway capable to accommodate almost all aircraft types for domestic andQueretaro Airport to benefit from this new development.international traffic and cargo; MRO services, aircra
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified