Research Questions • What are the characteristics of vulnerable populations in The Hague? • What are their needs in order to adapt to heatwaves, and how do they cope? • What are existing sustainable solutions for protecting vulnerable populations? • How can the municipality of The Hague increase urban resilience with regards to heat?
DOCUMENT
With increase in awareness of the risks posed by climate change and increasingly severe weather events, attention has turned to the need for urgent action. While strategies to respond to flooding and drought are well-established, the effects - and effective response - to heat waves is much less understood. As heat waves become more frequent, longer-lasting and more intense, the Cool Towns project provides cities and municipalities with the knowledge and tools to become heat resilient. The first step to developing effective heat adaptation strategies is identifying which areas in the city experience the most heat stress and who are the residents most affected. This enables decision-makers to prioritise heat adaptation measures and develop a city-wide strategy.The Urban Heat Atlas is the result of four years of research. It contains a collection of heat related maps covering more than 40,000 hectares of urban areas in ten municipalities in England, Belgium, The Netherlands, and France. The maps demonstrate how to conduct a Thermal Comfort Assessment (TCA) systematically to identify heat vulnerabilities and cooling capacity in cities to enable decision-makers to set priorities for action. The comparative analyses of the collated maps also provide a first overview of the current heat resilience state of cities in North-Western Europe.
DOCUMENT
While the optimal mean annual temperature for people and nations is said to be between 13 °C and 18 °C, many people live productive lives in regions or countries that commonly exceed this temperature range. One such country is Australia. We carried out an Australia-wide online survey using a structured questionnaire to investigate what temperature people in Australia prefer, both in terms of the local climate and within their homes. More than half of the 1665 respondents (58%) lived in their preferred climatic zone with 60% of respondents preferring a warm climate. Those living in Australia's cool climate zones least preferred that climate. A large majority (83%) were able to reach a comfortable temperature at home with 85% using air-conditioning for cooling. The preferred temperature setting for the air-conditioning devices was 21.7 °C (SD: 2.6 °C). Higher temperature set-points were associated with age, heat tolerance and location. The frequency of air-conditioning use did not depend on the location but rather on a range of other socio-economic factors including having children in the household, the building type, heat stress and heat tolerance. We discuss the role of heat acclimatisation and impacts of increasing air-conditioning use on energy consumption.
MULTIFILE
According to a governmental decision, all (re)constructions in Dutch cities starting by 2020 have to be climate resilient. Part of this climate resilience is also adaptation to (extreme) heat. Although urban heat, its causes, consequences, and potential adaptation measures, have been extensively studied by scientists all over the world, the understanding of this problem among practitioners is still limited. Local governments are struggling with defining the urgency and finding the right arguments for adaptation to this aspect of climate change. Also questions asked by municipality officers often differ from those asked (and answered) by scientists. How do you define “heat stress”? What are the best adaptation measures for our city? How do we know we have reached “heat resilience”? Or; Shall we just do what they do in Italy?Project Heat Resilient Cities is a cooperation of two research institutes, 13 municipalities, and a water authority in Netherlands. The aim of this project is to bring the current knowledge of urban heat adaptation to practice and to fill in the research gabs. The research focuses on clear visualizations of problematic areas, applicable heat resilient measures in Dutch context, and design guidelines leading towards more heat resilient cities. In this presentation, we will present an overview of practical tools (maps, instruments measures, visualizations, guidelines) that cities could use put heat resilience into practice.
DOCUMENT
Built environments are increasingly vulnerable to the impacts of climate change. Most European towns and cities have developed horizontally over time but are currently in the process of further densification. High-rise developments are being built within city boundaries at an unprecedented rate to accommodate a growing urban population. This densification contributes to the Urban Heat Island phenomenon and can increase the frequency and duration of extreme heat events locally. These new build-up areas, in common with historic city centres, consist mainly of solid surfaces often lacking open green urban spaces.The Intervention Catalogue is the third publication in a series produced by the Cool Towns project and has been designed as a resource for decision makers, urban planners, landscape architects, environmental consultants, elected members and anyone else considering how to mitigate heat stress and increase thermal comfort in urban areas. Technical information on the effectiveness of the full array of intervention types from trees to water features, shading sails to green walls, has been assessed for their heat stress mitigation properties, expressed in Physiological Equivalent Temperature (PET). The results shown in factsheets will help the process of making an informed, evidence based, choice so that the most appropriate intervention for the specific spatial situation can be identified.
DOCUMENT
The thermal walk investigates the influence of urban design on the thermal experience of pedestrians moving through a certain urban area. Thermal walks are often used by scientists to understand how residents experience heat in urban environments. However, thermal walks can also be beneficial to urban professionals working at local governments that need to adapt urban areas to rising temperatures. Thermal walks can answer their questions such as: How hot is a shopping street, a residential area, a specific walking route through the city or a station area? Which adjustments are needed to create cool spaces? Which factors determine whether the outdoor space is hot or cool and which of these factors can be included in a heat-resilient design? A thermal walk reveals and lets participants experience which urban designs are hottest, coolest or most pleasant, and which factors play a role. Therefore, thermal walks can help urban professionals by:• Mapping the heat resilience of a specific area and understanding which adjustments can help to create cooler areas; and• Teaching them the phenomenon of urban heat and the factors that lead to a heat resilient design. On the 18th of June 2019, during the ‘We make the city’ festival, we used the thermal walk to investigate the heat resilience of the walking route on a former historic naval base in the city of Amsterdam, the Marineterrein. In addition, the thermal walk was accompanied by mini-lectures in order to teach the participants about the phenomenon of urban heat.
MULTIFILE
In the Netherlands municipalities are searching for guidelines for a heat resilient design of the urban space. One of the guidelines which has recently been picked up is that each house should be within a 300 meter of an attractive cool spot outside. The reason is that houses might get too hot during a heat wave and therefor it is important that inhabitants have an alternative place to go. The distance of 300 m has been adopted because of practical reasons. This guideline has been proposed after a research of the University of Amsterdam of applied sciences and TAUW together with 15 municipalities.To help municipalities to take cool spots into account in their urban design the national organization for disseminating climate data has developed a distance to coolness map for all Dutch built up areas. This map shows the cool spots with a minimum of 200 m2 based on a map of the PET for a hot summer day (2*2 m2 spatial resolution). Furthermore the map shows the walking distance for each house (via streets and foot paths) to the nearest cool spot.This map helps as a starting point. Because not all cool spots are attractive cool spots. A research in 2021 showed what further basis and optional characteristics those cool spots should have: e.g. sufficiently large, combination of sun and shadow, benches, quiet, safe and clean. In fact those places should be attractive places to stay for most days of the year.With the distance to attractive cool spots municipalities can easily see which areas lack attractive cool spots. The distance to cool spot maps is therefore a way to simplify complex climate data into an understandable and practical guideline. This is an improvement as compared to using thresholds for temperatures and thresholds for duration of exceedance of those temperatures in a guideline.: Municipalities like this practical approach that combines climate adaptation with improving the livability of a city throughout the year.
DOCUMENT
This applied research project aims to generate a better understanding of the effects of heatwaves on vulnerable population groups in the municipality of The Hague, and suggests ways in which the municipality can help such groups to cope with these heatwaves. The research was performed as a cooperation between The Hague University of Applied Sciences (THUAS), the International Institute of Social Studies (ISS, Erasmus University Rotterdam) and the International Centre for Frugal Innovation (ICFI, Leiden-Delft-Erasmus Universities). Heatwaves constitute an important yet often overlooked part of climate change and their impacts qualify as disasters. According to the World Disasters Report 2020, the three heatwaves affecting Belgium, France, Germany, Italy, the Netherlands, Spain, Switzerland and the UK in the summer of 2019 caused 3,453 deaths.1 2020 was a new record year for the Netherlands because it was the first time that a heatwave included five days in a row during which the temperature reached 35 degrees or more. In addition, 40 degrees was measured for the first time, and periods of tropical days and nights are generally getting longer. Most importantly, this trend is accelerating faster than the climate change models are predicting.2 In addition, the COVID-19 pandemic is compounding the effect of heatwaves, as vulnerable individuals may be reluctant to seek cool spaces out of fear of infection. Already in 2006, the Netherlands ranked near the top of the global disaster index due to the number of excess deaths that could be attributed to the heatwave. In the same year, the EU published the first climate strategy in which heat is recognised as a priority. In 2008, the Netherlands developed its first national heat plan.4 The municipality of The Hague has a municipal climate adaptation strategy and has developed a draft local heat plan in the summer of 2021, which was published in February 2022 . This research was not meant to be and was not set up as an evaluation of the current heat plan, which has not yet been activated. At the level of municipalities and cities, the concept of urban resilience is key. It refers to “the capacity of individuals, communities, institutions, businesses, and systems within a city to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience”. Heatwaves clearly constitute acute shocks which are rapidly developing into chronic stresses. In turn, heatwaves also exacerbate the chronic stresses that are already there, i.e. existing chronic stresses also lead to greater impact of a heatwave. In other words, there are negative interaction effects. Addressing these effects requires overcoming the silo approach to urban governance, in which different municipal departments as well as other stakeholders (such as the Red Cross, housing corporations, tenants’ associations, care organisations, entrepreneurs etc.) each address different parts of the problem, rather than doing so in an integrated and inclusive manner. The dataset for this study is archived in DANS Easy: https://doi.org/10.17026/dans-xeb-h8uk
MULTIFILE
In this opinion piece, we establish some key priorities for evidence-based governance to address the increasing threat of heatwave events in Europe, particularly for human health. According to the European Environment Agency (EEA) [1], Europe is warming faster than the global average. The year 2020 was the warmest year in Europe since the instrumental records began, with the range of anomaly between 2.53˚C and 2.71˚C above the pre-industrial levels. Particularly high warming has been observed over eastern Europe, Scandinavia and the eastern part of the Iberian Peninsula. Climate change-related heatwaves are becoming a significant threat to human health and necessitate early action [2]. While financial resources and technological capacities are crucial to aid (local) governments in adapting to and proactively mitigating the threats posed by heatwaves, they are not enough [3]. Akin to flood responses, European countries must prepare for large-scale evacuations of vulnerable citizens (especially older adults living alone) from their homes. Here, we outline three priorities for Europe in the governance domain. These priorities encompass developing and rolling-out heat-health action plans, a stronger role for European Union institutions in regional heatwave governance, and creating a sense of urgency by developing innovative ways of communicating research findings to relevant policy makers and citizens.
DOCUMENT
"This publication, leaded by the National University of Singapore School of Design and Environment, presents the research by design results of four consecutive years in four different countries (China, Philippines, Indonesia and Thailand) responding to the current challenge of building more resilient cities in front of impacts of climate change, such as coastal and river flooding, water and air pollution, water scarcity, urban heat island effect, aquifer depletion or subsidence. The book brings together the work of highly-reputed academics, professionals and scholars from 20 universities worldwide with the aim of serving as a guide for mitigating and adapting to the effects of climate change, and more specifically to reinstating the environmental qualities of our cities through carbon-neutral or carbon net-positive urban designs and plans.The book demonstrates ‘seven inspirations’ – seven ideas –and 80 design interventions that contribute to the debate on how to address urban resilience through design, planning, technology, management, policies or community involvement in uncertain, unpredictable and transient scenarios, while suggesting creative and innovative design solutions to anticipate, prevent and adapt to the effects of climate-change. The research and designs included in this publication, aim to be speculative visions and provocative reflections that might present alternatives or paradigm shifts for imagining anticipatory and preventive scenarios for our cities. With Contributions of Bangladesh University of Engineering and Technology (Bangladesh), CEPT University (India), Louisiana State University (USA), National Cheng Kung University (Taiwan), National University of Singapore (Singapore), Royal Melbourne Institute of Technology (Australia), Rotterdam University of Applied Sciences (The Netherlands), Technische Universität Darmstadt (Germany), Université de Montréal (Canada)." -- Actar
LINK