Urban planners and several stakeholders in public and private sector are in need of (quickscan) tools that can assess the vulnerability to floods and thermal stress. Urban flooding and thermal stress have become key issues for manycities around the world. With the continuing effects of climate change, these two issues will become more acute and will add to the serious problems already experienced in dense urban areas around the globe.The present paper presents a large scale ‘stresstest’ that deals with the combination of innovative tools to address these challenges. For the whole province of Fryslân in The Netherlands flood maps and heat stress maps weredeveloped and used for the comparison analysis. Concrete priority problem locations where located with models and climate adaptive measures were selected in masterclasses in the period of January 2017 to June 2018 in a triplehelix consortium. The scale of this climate adaptation stresstest is considered the biggest and detailed in the world due to the high tech computing and the participation of all stakeholders involved. The masterclasses help stakeholders to follow the 3 step climate adaptation strategy 'analyse, ambition, act' with afocus on the first step ‘analyse’ that raises awareness and provides insights on the resilience to climate change of a specific area. The first evaluation of the applied tools and project results and by the stakeholders is positive. Theproject raised awareness on climate adaptation and delivered a calibrated stresstest for Fryslân with detailed calculations of flood risks and heatstress in the city. Best practices and climate adaptation strategies are created inmasterclasses. Stakeholders have a detailed insight in the vulnerability and resilience of their district and have concrete examples and plans to implement climate adaptation measures in the near future.
DOCUMENT
Natural disasters are a growing concern around the globe. In the Netherlands, water has always played an important role as both friend and enemy. To quickly analyze and visualise possible disaster outcomes has been really difficult. In collaboration with engineering company Tauw we improved this modellingwith an interdisciplinary team of GIS experts, High performance computing and real time visualisation. In a pilot for the city center of Groningen we developed a 3D version of flooding landscape maps (RUG, 2014) after modelling extreme rainfall. With a flooding landscape map you can see at a glance where water isgoing and where problem areas arise in case of extreme rainfall. Any municipality or county can thus quickly determine which measures are to be taken to prevent for example disruption to traffic or flooding damage tobuildings.
DOCUMENT
The changing climate has an effect on the quality of life in our cities: heavier rainfall (resulting infloodings), longer periods of drought, reduced air and water quality and increasing temperatures incities (heat stress). Awareness about these changes among various stakeholders is of greatimportance. Every Dutch region is required to perform a stresstest indicating the effects of climatechange (o.a. flooding and heatstress) before 2020. The level of execution, area size and level ofparticipation of stakeholders, has intentionally been made flexible.To provide more insight into the approaches and best management practices to climate resilience,this article provides 3 examples of stresstests performed on several levels: single object real estatelevel, city level and national district level. The method ‘stresstestíng’, involves flood and heatstressmodeling, defines the current status of climate adaptation characteristics of an object, city or district.The stresstest form the base line and starting point for the national 3 step approach adaptationstrategy ‘analyse, ambition and action’.The 3 pilots have been evaluated as ‘successful’ by stakeholders and yielded a significant amount ofvaluable information, further improvement is recommended as increasing the participation of theprivate sector, in a ‘quadruple helix approach’. The learning points from these 3 examples ofstresstests will subsequently be implemented in the form of improved stresstesting in the nearfuture in (inter)national cities around the world.
DOCUMENT
International conference Cities, Rain and Risk
MULTIFILE
Urbanisation and climate change have an effect on the water balance in our cities resulting in challenges as flooding, droughts and heatstress. Implementation of Sustainable Urban Drainage Systems (SuDS) can help to restore the water balance in cities by storing and infiltrating stormwater into the subsurface to minimise flooding, restoration of groundwater tables to prevent droughts, lowering temperatures by evapotranspiration to fight heatstress. Urban planners and otherstakeholders in municipalities and water authorities struggle with implementing SuDS at locations where infiltration of water seems challenging. Questions arise as: can you infiltrate in countries as The Netherlands with parts under sea level, high groundwater table and low permeable soil? Can you infiltrate in Norway with low permeable or impermeable bedrock and frozen ground most of theyear? How do you find space to implement SuDS in the dense urban areas of Bucharest? These questions are answered by researchers of the JPI Water funded project INovations for eXtreme Climatic Events (INXCES).To answer the question on ‘can we infiltrate stormwater under worse case conditions?’, testing of the hydraulic capacity take place at rainwater gardens in Norway (Bergen and Trondheim) and (bio)swales in the low lying parts of The Netherlands. The first results show that even under these ‘extreme’ hydraulic circumstances the hydraulic capacity (or empty time) is sufficient to infiltratemost of the stormwater throughout the year.INXCES exchanged researchers on an international level, shared research results with stakeholders and sets up guidelines for design, implementation and maintenance of SuDS to promote the implementation of sustainable water management systems throughout the world.One of the tools used to promote SuDS is www.climatescan.nl, an open source online map application that provides an easy-to-access database of international project information in the field of urban resilience and climate adaptation. The tool is able to map several sustainable urban drainage systems as has been done for Norway, The Netherlands, Romania and other countries in the world.The tool is used for engagement with stakeholders within EU projects as INXCES and WaterCoG and resulted in international knowledge exchange on infiltration of stormwater under extreme climate and geohydrolic circumstances.
DOCUMENT
Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
DOCUMENT
DOCUMENT
Urban flooding and thermal stress have become key issues formany cities around the world. With the continuing effects of climatechange, these two issues will become more acute and will add to theserious problems already experienced in dense urban areas. Therefore, thesectors of public health and disaster management are in the need of toolsthat can assess the vulnerability to floods and thermal stress. The presentpaper deals with the combination of innovative tools to address thischallenge. Three cities in different climatic regions with various urbancontexts have been selected as the pilot areas to demonstrate these tools.These cities are Tainan (Taiwan), Ayutthaya (Thailand) and Groningen(Netherlands). For these cities, flood maps and heat stress maps weredeveloped and used for the comparison analysis. The flood maps producedindicate vulnerable low-lying areas, whereas thermal stress maps indicateopen, unshaded areas where high Physiological Equivalent Temperature(PET) values (thermal comfort) can be expected. The work to dateindicates the potential of combining two different kinds of maps to identifyand analyse the problem areas. These maps could be further improved andused by urban planners and other stakeholders to assess the resilience andwell-being of cities. The work presented shows that the combined analysisof such maps also has a strong potential to be used for the analysis of otherchallenges in urban dense areas such as air and water pollution, immobilityand noise disturbance.
DOCUMENT
'Versteende pleinen in steden zijn hitte-eilanden. Gemeenten willen daarom meer groen, maar dat is niet eenvoudig. In Groningen zijn nieuwe bomen geplant in een innovatief waterbergingssysteem. De Grote Markt ging op de schop.'
LINK
There is a clear demand for collaborative, knowledge sharing tools for urban resilienceprojects. Climatescan is an interactive, web-based map application for international knowledge exchange on ‘blue-green’ projects around the globe. The tool was applied during the Adaptation Futures & The Water Institute of Southern Africa (WISA)conferences, June 2018, in Cape Town. The use of climatescan by different stakeholders during the event led to recommendations for a better application of the web-based map in Africa and around the world.
DOCUMENT