Service of SURF
© 2025 SURF
Understanding the factors that may impact the transfer, persistence, prevalence and recovery of DNA (DNA-TPPR), and the availability of data to assign probabilities to DNA quantities and profile types being obtained given particular scenarios and circumstances, is paramount when performing, and giving guidance on, evaluations of DNA findings given activity level propositions (activity level evaluations). In late 2018 and early 2019, three major reviews were published on aspects of DNA-TPPR, with each advocating the need for further research and other actions to support the conduct of DNA-related activity level evaluations. Here, we look at how challenges are being met, primarily by providing a synopsis of DNA-TPPR-related articles published since the conduct of these reviews and briefly exploring some of the actions taken by industry stakeholders towards addressing identified gaps. Much has been carried out in recent years, and efforts continue, to meet the challenges to continually improve the capacity of forensic experts to provide the guidance sought by the judiciary with respect to the transfer of DNA.
The paper presents a framework that through structured analysis of accident reports explores the differences between practice and academic literature as well amongst organizations regarding their views on human error. The framework is based on the hypothesis that the wording of accident reports reflects the safety thinking and models that have been applied during the investigation, and includes 10 aspects identified in the state-of-the-art literature. The framework was applied to 52 air accident reports published by the Dutch Safety Board (DSB) and 45 ones issued by the Australian Transport Safety Bureau (ATSB) from 1999 to 2014. Frequency analysis and statistical tests showed that the presence of the aspects in the accident reports varied from 32.6% to 81.7%, and revealed differences between the ATSB and the DSB approaches to human error. However, in overall safety thinking have not changed over time, thus, suggesting that academic propositions might have not yet affected practice dramatically.
The findings from a bloodstain pattern analysis (BPA) may assist in formulating or falsifying scenarios that are considered in the investigative stages of a criminal investigation. When a case proceeds to trial the bloodstain pattern expert may be asked about the relevance of their findings given scenarios that are proposed by the prosecution and defense counsel. Such opinions provided by an expert are highly relevant to police investigation or legal proceedings, but the reasoning behind the opinion or implicit assumptions made by the expert may not be transparent.A proper framework for the evaluation of forensic findings has been developed since the late twentieth century, based on the hierarchy of propositions, Bayesian reasoning and a model for case assessment and interpretation. This framework, when implemented in casework, mitigates some of the risks of cognitive biases, and makes the reasoning and scientific basis for the opinion transparent. This framework is broadly used across forensic science disciplines. In this paper we describe its application to the field of BPA using a case example from the Netherlands Forensic Institute (NFI).