BACKGROUND: The performance of activities of daily living (ADL) at home is important for the recovery of older individuals after hip fracture. However, 20-90% of these individuals lose ADL function and never fully recover. It is currently unknown to what extent occupational therapy (OT) with coaching based on cognitive behavioral treatment (CBT) improves recovery. The same holds for sensor monitoring-based coaching in addition to OT. Here, we describe the design of a study investigating the effect of sensor monitoring embedded in an OT rehabilitation program on the recovery of ADL among older individuals after hip fracture.METHODS/ DESIGN: Six nursing homes will be randomized in a three-arm stepped wedge cluster randomized trial. All nursing homes will initially provide standard care. At designated time points, nursing homes, successively and in random order, will cross over to the provision of OT and at the next time point, to sensor monitoring-enhanced OT. A total of 288 older individuals, previously living alone in the community, who after a hip fracture were admitted to a geriatric rehabilitation ward for a short-term rehabilitation, will be enrolled. Individuals in the first intervention group (OTc) will participate in an OT rehabilitation program with coaching based on cognitive behavioral therapy (CBT) principles. In the sensor monitoring group, sensor monitoring is added to the OT intervention (OTcsm). Participants will receive a sensor monitoring system consisting of (i) an activity monitor during nursing home stay, (ii) a sensor monitoring system at home and a (iii) a web-based feedback application. These components will be embedded in the OT. The OT consists of a weekly session with an occupational therapist during the nursing home stay followed by four home visits and four telephone consultations. The primary outcome is patient-perceived daily functioning at 6 months, assessed using the Canadian Occupational Performance Measure (COPM).DISCUSSION: As far as we know, this study is the first large-scale stepped wedge trial, studying the effect of sensor monitoring embedded in an OT coaching program. The study will provide new knowledge on the combined intervention of sensor monitoring and coaching in OT as a part of a rehabilitation program to enable older individuals to perform everyday activities and to remain living independently after hip fracture.TRIAL REGISTRATION NUMBER: Netherlands National Trial Register, NTR 5716 Date registered: April 1 2016.
To evaluate the 5-year course of physical work capacity of participants with early symptomatic osteoarthritis (OA) of the hip and/or the knee; to identify trajectories and explore the relationship between trajectories and covariates. Methods In a prospective cohort study, physical work capacity was measured at baseline, using a test protocol (functional capacity evaluation) consisting of work-related physical activities. Participants were invited to participate in 1, 2 and 5 year follow-up measurements. Multilevel analysis and latent classes analysis were performed, in models with test performances as dependent variables and age, sex, work status, self-reported function (Western Ontario McMasters Arthritis Scale-WOMAC), body mass index (BMI) and time as independent variables. Multiple imputation was used to control for the influence of missing data. Results At baseline and after 1, 2 and 5 years there were 96, 64, 61 and 35 participants. Mean (SD) age at baseline was 56 (4.9) years, 84% were females. There was no statistically significant change in test performances (lifting low and high, carrying, static overhead work, repetitive bending, repetitive rotations) between the 4 measurements. Male sex, younger age and better self-reported function were statistically significant (p < 0.05) determinants of higher performance on most of the tests; having a paid job, BMI and progression of time were not. Three trajectories were identified: 'weak giving way', 'stable and able', and 'strong with decline'. Discussion In subgroups of participants with early symptomatic OA, determined by age, sex and self-reported function, physical work capacity seems to be a stable characteristic over 5 years.
OBJECTIVE: The prevalence of osteoarthritis (OA) increases, but the impact of the disorder on peoples' functional capacity is not known. Therefore, the objective of this study was to compare self-reported health status and functional capacity of subjects with early OA of hip and/or knee to reference data of healthy working subjects and to assess whether this capacity is sufficient to meet physical job demands.METHODS: Self-reported health status and functional capacity of 93 subjects from the Cohort Hip and Cohort Knee (CHECK) were measured using the Short-Form 36 Health Survey and 6 tests of the Work Well Systems Functional Capacity Evaluation. Results were compared with reference data from 275 healthy workers, using t-tests. To compare the functional capacity with job demands, the proportions of subjects with OA performing lower than the p(5) of reference data were calculated.RESULTS: Compared to healthy workers, the subjects (mean age 56) from CHECK at baseline reported a significantly worse physical health status, whereas the women (n = 78) also reported a worse mental health status. On the FCE female OA subjects performed significantly lower than their healthy working counterparts on all 6 tests. Male OA subjects performed lower than male workers on 3 tests. A substantial proportion of women demonstrated functional capacities that could be considered insufficient to perform jobs with low physical demands.CONCLUSIONS: Functional capacity and self-reported health of subjects with early OA of the hips and knees were worse compared to healthy ageing workers. A substantial proportion of female subjects did not meet physical job demands.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
Organs-on-chips (OoCs) worden steeds belangrijker voor geneesmiddelonderzoek. Het kweken van miniatuurorganen in microfluïdische chips creëert een systeem waarmee geneesmiddelonderzoekers efficiënt geneesmiddelen kunnen testen. OoCs kunnen in de toekomst een belangrijk instrument voor personalized medicine worden: door het kweken van patiëntmateriaal in OoCs kan dan worden bepaald welke interventies voor specifieke patiënten werken en veilig zijn. In de huidige praktijk worden cellulaire veranderingen in OoCs na blootstelling aan een geneesmiddel doorgaans gevolgd met visualisatietechnieken, waarmee alleen effecten van geneesmiddelen kunnen worden waargenomen. Voor bepaling van de voor geneesmiddelonderzoek cruciale parameters absorptie, distributie, metabolisme en excretie (ADME) is het noodzakelijk om de concentraties van geneesmiddelen en hun relevante metabolieten te meten. Het doel van AC/OC is dit mogelijk te maken door het ontwikkelen van analytisch-chemische technieken, gebaseerd op vloeistofchromatografie gekoppeld met massaspectrometrie (LC-MS). Hiermee kunnen ontwikkelaars van OoCs (de eindgebruikers van AC/OC) de voordelen van hun producten voor geneesmiddelonderzoek beter onderbouwen. Dit project bouwt voort op twee KIEM-projecten, waarin enkele veelbelovende analytisch-chemische technieken succesvol zijn verkend. In AC/OC zullen wij: 1. analytisch-chemische methodes ontwikkelen die geschikt zijn om een breed scala aan geneesmiddelen en metabolieten te bepalen in meerdere types OoCs; 2. deze methodes verbeteren, zodat de analyse geautomatiseerd, sneller en gevoeliger wordt; 3. de potentie van deze methodes voor geneesmiddelonderzoek met OoCs demonsteren door ze toe te passen op enkele praktijkvraagstukken. Het OoC-veld ontwikkelt zich razendsnel en Nederland (georganiseerd binnen OoC-consortium hDMT) speelt daarin een belangrijke rol. AC/OC verbindt kennis en expertise op het gebied van analytische chemie, OoCs, celkweek en geneesmiddelonderzoek. Hierdoor kan AC/OC een bijdrage leveren aan sneller en betrouwbaarder geneesmiddelonderzoek. Met de ontwikkeling van een minor ‘OoC-Technology’, waarin we de onderzoeksresultaten vertalen naar onderwijs, spelen we in op de behoefte aan professionals met kennis, ervaring en belangstelling op het gebied van OoCs.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.