Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
DOCUMENT
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
With the effects of climate change linked to the use of fossil fuels, as well as the prospect of their eventual depletion, becoming more noticeable, political establishment and society appear ready to switch towards using renewable energy. Solar power and wind power are considered to be the most significant source of global low-carbon energy supply. Wind energy continues to expand as it becomes cheaper and more technologically advanced. Yet, despite these expectations and developments, fossil fuels still comprise nine-tenths of the global commercial energy supply. In this article, the history, technology, and politics involved in the production and barriers to acceptance of wind energy will be explored. The central question is why, despite the problems associated with the use of fossil fuels, carbon dependency has not yet given way to the more ecologically benign forms of energy. Having briefly surveyed some literature on the role of political and corporate stakeholders, as well as theories relating to sociological and psychological factors responsible for the grassroots’ resistance (“not in my backyard” or NIMBYs) to renewable energy, the findings indicate that motivation for opposition to wind power varies. While the grassroots resistance is often fueled by the mistrust of the government, the governments’ reason for resisting renewable energy can be explained by their history of a close relationship with the industrial partners. This article develops an argument that understanding of various motivations for resistance at different stakeholder levels opens up space for better strategies for a successful energy transition. https://doi.org/10.30560/sdr.v1n1p11 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Analyse the results from a representative selection of the supply chain studies for school feeding programmes in Kenya, Ghana and Mali, and make specific suggestions for interventions that can efficiently include SHF in the supply chains.
DOCUMENT
Ageing-in-place is the preferred way of living for older individuals in an ageing society. It can be facilitated through architectural and technological solutions in the home environment. Dementia poses additional challenges when designing, constructing, or retrofitting housing facilities that support ageing-in-place. Older adults with dementia and their partners ask for living environments that support independence, compensate for declining and vitality, and lower the burden of family care. This study reports the design process of a demonstration home for people with dementia through performing a literature review and focus group sessions. This design incorporates modifications in terms of architecture, interior design, the indoor environment, and technological solutions. Current design guidelines are frequently based on small-scale studies, and, therefore, more systematic field research should be performed to provide further evidence for the efficacy of solutions. The dwellings of people with dementia are used to investigate the many aspects of supportive living environments for older adults with dementia and as educational and training settings for professionals from the fields of nursing, construction, and building services engineering.
DOCUMENT
Completeness of data is vital for the decision making and forecasting on Building Management Systems (BMS) as missing data can result in biased decision making down the line. This study creates a guideline for imputing the gaps in BMS datasets by comparing four methods: K Nearest Neighbour algorithm (KNN), Recurrent Neural Network (RNN), Hot Deck (HD) and Last Observation Carried Forward (LOCF). The guideline contains the best method per gap size and scales of measurement. The four selected methods are from various backgrounds and are tested on a real BMS and metereological dataset. The focus of this paper is not to impute every cell as accurately as possible but to impute trends back into the missing data. The performance is characterised by a set of criteria in order to allow the user to choose the imputation method best suited for its needs. The criteria are: Variance Error (VE) and Root Mean Squared Error (RMSE). VE has been given more weight as its ability to evaluate the imputed trend is better than RMSE. From preliminary results, it was concluded that the best K‐values for KNN are 5 for the smallest gap and 100 for the larger gaps. Using a genetic algorithm the best RNN architecture for the purpose of this paper was determined to be GatedRecurrent Units (GRU). The comparison was performed using a different training dataset than the imputation dataset. The results show no consistent link between the difference in Kurtosis or Skewness and imputation performance. The results of the experiment concluded that RNN is best for interval data and HD is best for both nominal and ratio data. There was no single method that was best for all gap sizes as it was dependent on the data to be imputed.
MULTIFILE