This study explores if multiple alterations of the classrooms' indoor environmental conditions, which lead to environmental conditions meeting quality class A of Dutch guidelines, result in a positive effect on students' perceptions and performance. A field study, with a between-group experimental design, was conducted during the academic course in 2020–2021. First, the reverberation time (RT) was lowered in the intervention condition to 0.4 s (control condition 0.6 s). Next, the horizontal illuminance (HI) level was raised in the intervention condition to 750 lx (control condition 500 lx). Finally, the indoor air quality (IAQ) in both conditions was improved by increasing the ventilation rate, resulting in a reduction of carbon dioxide concentrations, as a proxy for IAQ, from ~1100 to <800 ppm. During seven campaigns, students' perceptions of indoor environmental quality, health, emotional status, cognitive performance, and quality of learning were measured at the end of each lecture using questionnaires. Furthermore, students' objective cognitive responses were measured with psychometric tests of neurobehavioural functions. Students' short-term academic performance was evaluated with a content-related test. From 201 students, 527 responses were collected. The results showed that the reduction of the RT positively influenced students' perceived cognitive performance. A reduced RT in combination with raised HI improved students' perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students' ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students' perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknown.
DOCUMENT
Over 40% of nursing home residents in the Netherlands are estimated to have visual impairments. In this study, light conditions in Dutch nursing homes were assessed in terms of horizontal and vertical illuminances and colour temperature. Results showed that in the seven nursing homes vertical illuminances in common rooms fell significantly below the 750 lx reference value in at least 65% of the measurements. Horizontal illuminance measurements in common rooms showed a similar pattern. At least 55% of the measurements were below the 750 lx threshold. The number of measurements at the window zone was significantly higher than the threshold level of 750 lx. Illuminances in the corridors fell significantly below the 200 lx threshold in at least three quarters of the measurements in six of the seven nursing homes. The colour temperature of light fell significantly below the reference value for daylight of 5000 K with median scores of 3400 to 4500 K. A significant difference in colour temperature was found between recently constructed nursing homes and some older homes. Lighting conditions of the examined nursing homes were poor. With these data, nursing home staff have the means to improve the lighting conditions, for instance, by encouraging residents to be seated next to a window when performing a task or during meals.
DOCUMENT
This study explores if multiple alterations of the classrooms' indoor environmental conditions, which lead to environmental conditions meeting quality class A of Dutch guidelines, result in a positive effect on students' perceptions and performance. A field study, with a between-group experimental design, was conducted during the academic course in 2020–2021. First, the reverberation time (RT) was lowered in the intervention condition to 0.4 s (control condition 0.6 s). Next, the horizontal illuminance (HI) level was raised in the intervention condition to 750 lx (control condition 500 lx). Finally, the indoor air quality (IAQ) in both conditions was improved by increasing the ventilation rate, resulting in a reduction of carbon dioxide concentrations, as a proxy for IAQ, from ~1100 to
DOCUMENT
This study examines the impact of moderate and high lighting and indoor air quality (IAQ) conditions on students’ well-being during a regular academic course in higher education. To determine the precise contribution of these two indoor environmental factors, students’ perceptions of their well-being were examined with the Positive and Negative Affect, Basic Emotional Process, and Karolinska Sleepiness Scale. Data were collected from 83 students, resulting in 285 responses, distributed across four combinations of moderate and high IAQ conditions, resp. > 800 ppm ≤ 950 ppm carbon dioxide (CO2) and < 800 ppm CO2, and moderate and high horizontal illuminance (HI) levels, resp. 500 lx and 750 lx. The results indicated that high HI levels did not enhance students’ perceived well-being compared to moderate levels. However, high IAQ conditions significantly contributes to students’ well-being, compared to moderate conditions. Interaction effects between the two factors were observed at moderate conditions.
DOCUMENT
Purpose:The International Commission on Illumination (CIE) recommends researchers to investigate a widevariety of behavioural and health outcomes. However, researchers often investigate only a part of occupationalhealth (OH) in relation to light. A literature study (2002–2017) regarding the relationship between office lightingconditions and OH was performed to identify gaps and methodological issues.Method:The OH outcomes investigated in this paper were grouped according to the International Classificationof Diseases and analysed per category: physical and physiological health, mental health, eye health, sleep param-eters and visual comfort.Results:Findings from the literature study (20 eligible papers) showed that all OH aspects were mostly but notexclusively measured subjectively. Furthermore, most studies investigated only a fraction of office lighting par-ameters and OH aspects.Conclusions:It seems that Correlated Colour Temperature (CCT) and illuminance mainly correlate with OH.However, this may also be explained by gaps and methodological issues in studies described in eligible papers.Based on the literature study, an overview was composed elucidating gaps and methodological issues of officelighting and OH studies. It can be used to design and target the purpose of light and health research.
DOCUMENT
Light enables us to see and perceive our environment but it also initiates effects beyond vision, such as alertness. Literature describes that at least six factors are relevant for initiating effects beyond vision. The exact relationship between these factors and alertness is not yet fully understood. In the current field study, personal lighting conditions of 62 Dutch office workers (aged 49.7 ± 11.4 years) were continuously measured and simultaneously self-reported activities and locations during the day were gathered via diaries. Each office worker participated 10 working days in spring 2017. Personal lighting conditions were interpreted based on four of the six factors (light quantity, spectrum, timing, and duration of light exposure). Large individual differences were found for the daily luminous exposures, illuminances, correlated colour temperatures, and irradiances measured with the blue sensor area of the dosimeter. The average illuminance (over all participants and all days) over the course of the day peaked three times. The analysis of the duration of light exposure demonstrated that the participants were on average only exposed to an illuminance above 1000 lx for 72 minutes per day. The interpretation of personal lighting conditions based on the four factors provides essential information since all of these factors may be relevant for initiating effects beyond vision. The findings in the current paper give first in-depth insight in the possibilities to interpret personal lighting conditions of office workers.
MULTIFILE
Health symptoms may be influenced, supported, or even controlled via a lighting control system which includes personal lighting conditions and personal factors (health characteristics). In order to be effective, this lighting control system requires both continuous information on the lighting and health conditions at the individual level. A new practical method to determine these continuous personal lighting conditions has been developed: location-bound estimations (LBE). This method was validated in the field in two case studies; comparisons were made between the LBE and location-bound measurements (LBM) in case study 1 and between the LBE and person-bound measurements (PBM) in case study 2. Overall, the relative deviation between the LBE and LBM was less than 15%, whereas the relative deviation between the LBE and PBM was 32.9% in the best-case situation. The relative deviation depends on inaccuracies in both methods (i.e., LBE and PBM) and needs further research. Adding more input parameters to the predictive model (LBE) will improve the accuracy of the LBE. The proposed first approach of the LBE is not without limitations; however, it is expected that this practical method will be a pragmatic approach of inserting personal lighting conditions into lighting control systems.
DOCUMENT
Light therapy is increasingly administered and studied as a non-pharmacologic treatment for a variety of healthrelated problems, including treatment of people with dementia. Light therapy comes in a variety of ways, ranging from being exposed to daylight, to being exposed to light emitted by light boxes and ambient bright light. Light therapy is an area in medicine where medical sciences meet the realms of physics, engineering and technology. Therefore, it is paramount that attention is paid in the methodology of studies to the technical aspects in their full breadth. This paper provides an extensive introduction for non-technical researchers on how to describe and adjust their methodology when involved in lighting therapy research. A specific focus in this manuscript is on ambient bright light, as it is an emerging field within the domain of light therapy. The paper deals with how to (i) describe the lighting equipment, (ii) describe the light measurements, (iii) describe the building and interaction with daylight. Moreover, attention is paid to the uncertainty in standards and guidelines regarding light and lighting for older adults.
DOCUMENT
Over 40% of nursing home residents in the Netherlands are estimated to have visual impairments. In this study, light conditions in Dutch nursing homes were assessed in terms of horizontal and vertical illuminances and colour temperature. Results showed that in the seven nursing homes vertical illuminances in common rooms fell significantly below the 750 lx reference value in at least 65% of the measurements. Horizontal illuminance measurements in common rooms showed a similar pattern. At least 55% of the measurements were below the 750 lx threshold. The number of measurements at the window zone was significantly higher than the threshold level of 750 lx. Illuminances in the corridors fell significantly below the 200 lx threshold in at least three quarters of the measurements in six of the seven nursing homes. The colour temperature of light fell significantly below the reference value for daylight of 5000 K with median scores of 3400 to 4500 K. A significant difference in colour temperature was found between recently constructed nursing homes and some older homes. Lighting conditions of the examined nursing homes were poor. With these data, nursing home staff have the means to improve the lighting conditions, for instance, by encouraging residents to be seated next to a window when performing a task or during meals.
DOCUMENT