Adaptive survey design has attracted great interest in recent years, but the number of case studies describing actual implementation is still thin. Reasons for this may be the gap between survey methodology and data collection, practical complications in differentiating effort across sample units and lack of flexibility of survey case management systems. Currently, adaptive survey design is a standard option in redesigns of person and household surveys at Statistics Netherlands and it has been implemented for the Dutch Health survey in 2018. In this article, the implementation of static adaptive survey designs is described and motivated with a focus on practical feasibility.
DOCUMENT
Challenges that surveys are facing are increasing data collection costs and declining budgets. During the past years, many surveys at Statistics Netherlands were redesigned to reduce costs and to increase or maintain response rates. From 2018 onwards, adaptive survey design has been applied in several social surveys to produce more accurate statistics within the same budget. In previous years, research has been done into the effect on quality and costs of reducing the use of interviewers in mixed-mode surveys starting with internet observation, followed by telephone or face-to-face observation of internet nonrespondents. Reducing follow-ups can be done in different ways. By using stratified selection of people eligible for follow-up, nonresponse bias may be reduced. The main decisions to be made are how to divide the population into strata and how to compute the allocation probabilities for face-to-face and telephone observation in the different strata. Currently, adaptive survey design is an option in redesigns of social surveys at Statistics Netherlands. In 2018 it has been implemented in the Health Survey and the Public Opinion Survey, in 2019 in the Life Style Monitor and the Leisure Omnibus, in 2021 in the Labour Force Survey, and in 2022 it is planned for the Social Coherence Survey. This paper elaborates on the development of the adaptive survey design for the Labour Force Survey. Attention is paid to the survey design, in particular the sampling design, the data collection constraints, the choice of the strata for the adaptive design, the calculation of follow-up fractions by mode of observation and stratum, the practical implementation of the adaptive design, and the six-month parallel design with corresponding response results.
DOCUMENT
In the literature about web survey methodology, significant eorts have been made to understand the role of time-invariant factors (e.g. gender, education and marital status) in (non-)response mechanisms. Time-invariant factors alone, however, cannot account for most variations in (non-)responses, especially fluctuations of response rates over time. This observation inspires us to investigate the counterpart of time-invariant factors, namely time-varying factors and the potential role they play in web survey (non-)response. Specifically, we study the effects of time, weather and societal trends (derived from Google Trends data) on the daily (non-)response patterns of the 2016 and 2017 Dutch Health Surveys. Using discrete-time survival analysis, we find, among others, that weekends, holidays, pleasant weather, disease outbreaks and terrorism salience are associated with fewer responses. Furthermore, we show that using these variables alone achieves satisfactory prediction accuracy of both daily and cumulative response rates when the trained model is applied to future unseen data. This approach has the further benefit of requiring only non-personal contextual information and thus involving no privacy issues. We discuss the implications of the study for survey research and data collection.
DOCUMENT