With the rise of chronic diseases as the number one cause of death and disability among urban populations, it has become increasingly important to design for healthy environments. There is, however, a lack of interdisciplinary approaches and solutions to improve health and well-being through urban planning and design. This case study offers an HCI solution and approach to design for healthy urban structures and dynamics in existing neighborhoods. We discuss the design process and design of ROOT, an interactive lighting system that aims to stimulate walking and running through supportive, collaborative and social interaction.
DOCUMENT
‘Creating the Difference’ is the theme of the 2014 edition of the Chi Sparks conference. It is also the challenge that the Human-Computer Interaction (HCI) community is facing today. HCI is a creative field where practitioners engage in design, production, and evaluation of interactions between people and digital technology. Creating excellent interfaces for people, they make a difference in media and systems that people are eager to use. Usability and user experience are fundamental for achieving this, as are abilities at the forefront of technology, but key to a successful difference is getting the right concepts, addressing genuine, intrinsic, human needs. Researchers and practitioners contribute to this area from theory as well as practice by sharing, discussing, and demonstrating new ideas and developments. This is how HCI creates a difference for society, for individuals, businesses, education, and organizations. The difference that an interactive product or service makes might lie in the concept of it but also in the making, the creation of details and the realisation. It is through powerful concepts and exceptional quality of realisation that innovation is truly achieved. At the Chi Sparks 2014 conference, researchers and practitioners in the HCI community convene to share and discuss their efforts on researching and developing methods, techniques, products, and services that enable people to have better interactions with systems and other people. The conference is hosted at The Hague University of Applied Sciences, and proudly built upon the previous conferences in Arnhem (2011) and Leiden (2009). Copyright van de individuele papers ligt bij de betreffende auteurs.
DOCUMENT
Abundant HCI research exists on the many assistive technologies that provide help with everyday physical and cognitive tasks. However, while a purely assistive approach often casts aging people in passive roles, recent studies suggest that adults may be ‘flourishing’ way into advanced age, even though implicit ageist prejudices are difficult to eradicate. Negative age-related stereotypes are the hidden and yet urgent issue we address in this study. There is a clear opportunity for an anti-ageist perspective in HCI, an approach that we propose as complementary to assistive technologies: in addition to providing solutions for the aging population, we urgently call for designs about aging, to spark a conversation on age, raise awareness and ultimately contrast ageist stereotypes. We point at empathy as a key element to reconceptualize, at least in part, HCI’s contribution to research on aging. We present a design critique of two interactive pieces that, although not without flaws, suggest how future empathy-raising artifacts might be. Our analysis combines pragmatist aesthetics, interaction criticism and ludology, and yields four design tactics (recurring configurations of significant elements) that are generative in bringing about broader design implications towards a different, empathy-based concept of aging in HCI.
DOCUMENT
Abstract: Embodied embedded cognition (EEC) has gained support in cognitive science as well as in human–computer interaction (HCI). EEC can be characterized both by its action-centeredness as well as its roots in phenomenology. The phenomenological aspects of EEC could be seen as support for trends in design emphasizing the user experience. Meanwhile, usability issues often are still approached using traditional methods based on cognitivist assumptions. In this paper, I argue for a renewed focus on improving usability from an EEC perspective. I draw mainly on a behavior-oriented interpretation of the theory, the key aspects of which are reviewed. A tentative sketch for an embodied embedded usability is proposed, doing justice to the embodied embedded nature of interaction while retaining the goal of developing technology that is easy to use in everyday practice.
LINK
The concept of human-computer integration (HInt) is entering a new evolutionary phase, that leads to a paradigm shift from interaction to the integration of computing devices with the human body (Farooq & Grudin, 2017). This embodied integration, where a computer tightly integrates with the human body (Mueller, Maes & Grudin, 2019), engages the human being in mutual give-and-take relationships with computational systems. The paradigm shift in human-computer integration might have more to do with ‘becoming-in-the-world’ (Shildrick, 2022) than with ‘being-in-the-world’ requires a rethinking in the philosophy on the human body and its technological intertwining. Our research project starts from the belief that new insight and meanings on bodily understanding in the context of Human-Computer Integration can only be achieved through a creative and artistic exploration of the ‘lived experience’ of disabled bodies. In this project, research activities will be grounded in feminist philosophy and performed into the context of disability, yet the methodological approach of exploring the ‘felt sense’ and ‘kinaesthetics’ of the disability materiality takes place through performative design practice at the intersection of the HCI-related research fields of Soma Design (Höök, 2018) and Somaesthetics (Shusterman, 2008), as well as artistic disciplines, such as Musicology and Music Therapy, Dance and Dance Movement Therapy, Disability Arts and Critical Disability Studies. This paper starts with an explanation of the current research situation, and then provides background information on the different schools of thought that are present in the project. It continues with describing the research goals, methods, and research questions. The final part of the paper consists of an overview of three preliminary studies which explore human-computer relationships through the combination of performative practice and cyber-physical demonstrators, created by bachelor-students ‘Communication and Multimedia Design’ at Amsterdam University of Applied Sciences in The Netherlands and master-students ‘Web, Communication, and Information Systems’ at the Fachhochschule Kufstein in Austria. The takeaway message of this paper is that to advance our understandings of human-computer integration, we must consider a perspectivist viewpoint to develop alternative ways for exploring the bodily complexities of human-computer integration. We further argue that disability can be a catalyst for innovation and life-changing design in health and well-being, as it automatically emphasises the need for engaging with ‘being human’ in the context of the human-computer relationship. This PhD-project is productively looking for new forms of studying the context of disability, to unveil, excavate and expose knowledge for human- computer integration (HInt) that would otherwise be overlooked in the HCI-community.
DOCUMENT
In today's world, understanding different viewpoints is key for societal cohesion and progress. Robots have the potential to provide aid in discussing tough topics like ethnicity and gender. However, comparably to humans, the appearance of a robot can trigger inherent prejudices. This study delves into the interplay between robot appearance and decision-making in ethical dilemmas. Employing a Furhat robot that can change faces in an instant, we looked at how robot appearance affects decision-making and the perception of the robot itself. Pairs of participants were invited to discuss a dilemma presented by a robot, covering sensitive topics of ethnicity or gender. The robot either adopted a first-person or third-person perspective and altered its appearance accordingly. Following the explanation, participants were encouraged to discuss their choice of action in the dilemma situation. We did not find significant influences of robot appearance or dilemma topic on perceived anthropomorphism, animacy, likeability, or intelligence of the robot, partly in line with previous research. However, several participants hearing the dilemma from a first-person perspective changed their opinion because of the robot's appearance. Future work can expand with different measures such as engagement, in order to shed light on the intricate dynamics of human-robot interaction, emphasizing the need for thoughtful consideration in designing robot appearances to promote unbiased engagement in discussions of societal significance
DOCUMENT
Office well-being aims to explore and support a healthy, balanced and active work style in office environments. Recent work on tangible user interfaces has started to explore the role of physical, tangible interfaces as active interventions to explore how to tackle problems such as inactive work and lifestyles, and increasingly sedentary behaviours. We identify a fragmented research landscape on tangible Office well-being interventions, missing the relationship between interventions, data, design strategies, and outcomes, and behaviour change techniques. Based on the analysis of 40 papers, we identify 7 classifications in tangible Office well-being interventions and analyse the intervention based on their role and foundation in behaviour change. Based on the analysis, we present design considerations for the development of future tangible Office well-being design interventions and present an overview of the current field and future research into tangible Office well-being interventions to design for a healthier and active office environment.
DOCUMENT
To improve people’s lives, human-computer interaction researchers are increasingly designing technological solutions based on behavior change theory, such as social comparison theory (SCT). However, how researchers operationalize such a theory as a design remains largely unclear. One way to clarify this methodological step is to clearly state which functional elements of a design are aimed at operationalizing a specific behavior change theory construct to evaluate if such aims were successful. In this article, we investigate how the operationalization of functional elements of theories and designs can be more easily conveyed. First, we present a scoping review of the literature to determine the state of operationalizations of SCT as behavior change designs. Second, we introduce a new tool to facilitate the operationalization process. We term the tool blueprints. A blueprint explicates essential functional elements of a behavior change theory by describing it in relation to necessary and sufficient building blocks incorporated in a design. We describe the process of developing a blueprint for SCT. Last, we illustrate how the blueprint can be used during the design refinement and reflection process.
DOCUMENT
Participating in physical activity (PA) is beneficial for adolescents' physical and mental development. Therefore, many studies have been conducted to design and evaluate interactive interventions to facilitate adolescents' PA. Despite the knowledge produced by this large number of studies, the field of Human-Computer Interaction (HCI) still lacks a comprehensive set of guidelines to guide our design processes, help us make informed design decisions, as well as provide niche for innovation. This paper reports a systematic literature review of studies on technology-supported interventions in adolescents' PA. We reviewed 25 design related studies in HCI over the past 10 years, analyzing 1) the process phases of design practice, 2) the design requirements and related design decisions, and 3) how these phases and requirements are internally related to each other and what are their influence on design value. Our findings suggest four design phases with seven design requirements and its corresponding design decisions emerged in the process of design. Furthermore, we outline a framework to demonstrate the internal relations of design requirements. We generalize opportunities and challenges for supporting the aforementioned design decisions making, and implementing the findings for future design and research on technology-supported adolescents' PA. https://doi.org/10.1145/3311927.3323130
DOCUMENT
Explainable Artificial Intelligence (XAI) aims to provide insights into the inner workings and the outputs of AI systems. Recently, there’s been growing recognition that explainability is inherently human-centric, tied to how people perceive explanations. Despite this, there is no consensus in the research community on whether user evaluation is crucial in XAI, and if so, what exactly needs to be evaluated and how. This systematic literature review addresses this gap by providing a detailed overview of the current state of affairs in human-centered XAI evaluation. We reviewed 73 papers across various domains where XAI was evaluated with users. These studies assessed what makes an explanation “good” from a user’s perspective, i.e., what makes an explanation meaningful to a user of an AI system. We identified 30 components of meaningful explanations that were evaluated in the reviewed papers and categorized them into a taxonomy of human-centered XAI evaluation, based on: (a) the contextualized quality of the explanation, (b) the contribution of the explanation to human-AI interaction, and (c) the contribution of the explanation to human- AI performance. Our analysis also revealed a lack of standardization in the methodologies applied in XAI user studies, with only 19 of the 73 papers applying an evaluation framework used by at least one other study in the sample. These inconsistencies hinder cross-study comparisons and broader insights. Our findings contribute to understanding what makes explanations meaningful to users and how to measure this, guiding the XAI community toward a more unified approach in human-centered explainability.
MULTIFILE