Home care patients often use many medications and are prone to drug-related problems (DRPs). For the management of problems related to drug use, home care could add to the multidisciplinary expertise of general practitioners (GPs) and pharmacists. The home care observation of medication-related problems by home care employees (HOME)-instrument is paper-based and assists home care workers in reporting potential DRPs. To facilitate the multiprofessional consultation, a digital report of DRPs from the HOME-instrument and digital monitoring and consulting of DRPs between home care and general practices and pharmacies is desired. The objective of this study was to develop an electronic HOME system (eHOME), a mobile version of the HOME-instrument that includes a monitoring and a consulting system for primary care.
DOCUMENT
Greenport West-Holland en de EconomicBoard Zuid Holland werken samen aan de ontwikkeling en uitvoering van een human capitalagenda (HCA) voor de provincie en de Greenport. Hiervoor wordt in juni –juli 2019 een Human CapitalAkkoord gesloten met meerdere sectoren waaronder de Greenport. Onderdeel van het akkoord is een gezamenlijke investering in een eerste pilot (2019 –2022) met een focus op van Werk naar Werk. Greenport West-Holland heeft aan de hand van de bestaande HCA van de topsector tuinbouw & uitgangsmaterialen, Techniek pact, Groen pact, ambities van Glastuinbouw Nederland, AVAG, handel en de inbreng vanuit de mooie voorbeelden in de regio (de pareltjes), individuele ondernemers en gemeenten een samenhangend pakket van interventies uitgewerkt. Deze interventies sluiten voor een groot deel aan op de EBZ pilot doelstellingen (VET), maar niet allemaal. De interventies maken zoveel mogelijk gebruik van bestaande oplossingen (pareltjes) die versterkt en verbonden worden.
DOCUMENT
Automated Analysis of Human Performance Data could help to understand and possibly predict the performance of the human. To inform future research and enable Automated Analysis of Human Performance Data a systematic mapping study (scoping study) on the state-of-the-art knowledge is performed on three interconnected components(i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis. Using a systematic method of Kitchenham and Charters for performing the systematic mapping study, resulted in a comprehensive search for studies and a categorisation the studies using a qualitative method. This systematic mapping review extends the philosophy of Shyr and Spisic, and Knuth and represents the state-of-art knowledge on Human Performance,Monitoring Human Performance and Automated Data Analysis
DOCUMENT
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
Cell-based production processes in bioreactors and fermenters need to be carefully monitored due to the complexity of the biological systems and the growth processes of the cells. Critical parameters are identified and monitored over time to guarantee product quality and consistency and to minimize over-processing and batch rejections. Sensors are already available for monitoring parameters such as temperature, glucose, pH, and CO2, but not yet for low-concentration substances like proteins and nucleic acids (DNA). An interesting critical parameter to monitor is host cell DNA (HCD), as it is considered an impurity in the final product (downstream process) and its concentration indicates the cell status (upstream process). The Molecular Biosensing group at the Eindhoven University of Technology and Helia Biomonitoring are developing a sensor for continuous biomarker monitoring, based on Biosensing by Particle Motion. With this consortium, we want to explore whether the sensor is suitable for the continuous measurement of HCD. Therefore, we need to set-up a joint laboratory infrastructure to develop HCD assays. Knowledge of how cells respond to environmental changes and how this is reflected in the DNA concentration profile in the cell medium needs to be explored. This KIEM study will enable us to set the first steps towards continuous HCD sensing from cell culture conditions controlling cell production processes. It eventually generates input for machine learning to be able to automate processes in bioreactors and fermenters e.g. for the production of biopharmaceuticals. The project entails collaboration with new partners and will set a strong basis for subsequent research projects leading to scientific and economic growth, and will also contribute to the human capital agenda.
The ELSA AI lab Northern Netherlands (ELSA-NN) is committed to the promotion of healthy living, working and ageing. By investigating cultural, ethical, legal, socio-political, and psychological aspects of the use of AI in different decision-makingcontexts and integrating this knowledge into an online ELSA tool, ELSA-NN aims to contribute to knowledge about trustworthy human-centric AI and development and implementation of health technology innovations, including AI, in theNorthern region.The research in ELSA-NN will focus on developing and mapping ELSA knowledge around three general concepts of importance for the development, monitoring and implementation of trustworthy and human-centric AI: availability, use,and performance. These concepts will be explored in two lines of research: 1) use case research investigating the use of different AI applications with different types of data in different decision-making contexts at different time periods duringthe life course, and 2) an exploration among stakeholders in the Northern region of needs, knowledge, (digital) health literacy, attitudes and values concerning the use of AI in decision-making for healthy living, working and ageing. Specificfocus will be on investigating low social economic status (SES) perspectives, since health disparities between high and low SES groups are growing world-wide, including in the Northern region and existing health inequalities may increase with theintroduction and use of innovative health technologies such as AI.ELSA-NN will be integrated within the AI hub Northern-Netherlands, the Health Technology Research & Innovation Cluster (HTRIC) and the Data Science Center in Health (DASH). They offer a solid base and infrastructure for the ELSA-NNconsortium, which will be extended with additional partners, especially patient/citizens, private, governmental and researchrepresentatives, to have a quadruple-helix consortium. ELSA-NN will be set-up as a learning health system in which much attention will be paid to dialogue, communication and education.