The real-time simulation of human crowds has many applications. In a typical crowd simulation, each person ('agent') in the crowd moves towards a goal while adhering to local constraints. Many algorithms exist for specific local ‘steering’ tasks such as collision avoidance or group behavior. However, these do not easily extend to completely new types of behavior, such as circling around another agent or hiding behind an obstacle. They also tend to focus purely on an agent's velocity without explicitly controlling its orientation. This paper presents a novel sketch-based method for modelling and simulating many steering behaviors for agents in a crowd. Central to this is the concept of an interaction field (IF): a vector field that describes the velocities or orientations that agents should use around a given ‘source’ agent or obstacle. An IF can also change dynamically according to parameters, such as the walking speed of the source agent. IFs can be easily combined with other aspects of crowd simulation, such as collision avoidance. Using an implementation of IFs in a real-time crowd simulation framework, we demonstrate the capabilities of IFs in various scenarios. This includes game-like scenarios where the crowd responds to a user-controlled avatar. We also present an interactive tool that computes an IF based on input sketches. This IF editor lets users intuitively and quickly design new types of behavior, without the need for programming extra behavioral rules. We thoroughly evaluate the efficacy of the IF editor through a user study, which demonstrates that our method enables non-expert users to easily enrich any agent-based crowd simulation with new agent interactions.
MULTIFILE
Introduction: The notion of autonomy in Self-Determination Theory is at the core of intrinsically motivated learning, and fulfilment of the need for autonomy is essential for thriving at school. Therefore teacher-provided autonomy support has grown into a key concern in educational research. In the present study into primary school music education, the notion of creative autonomy support is introduced. Research into autonomy support is typically focused on verbal interaction. However, from an enactive perspective, teachers’ gesturing, bodily movement, facial expression, and musical action form an integral part of the socially situated interaction in music lessons, inherently involving autonomy support. In the present study, a distinction is made between creative verbal autonomy support and creative musical and non-verbal autonomy support.Methods: Applying a process-based time-serial methodology, rooted in a Complex Dynamic Systems and Enactive perspective, the effects of an intervention with Video Feedback Coaching for teachers were investigated. Video data of 105 music lessons of 18 teachers (intervention and control condition) from six primary schools was gathered, to examine teachers’ creative autonomy support at both the individual and group level.Results: The findings show that teachers in the intervention condition, compared to the control group, achieved a meaningful increase in their ability to offer creative autonomy support verbally. Teachers also showed development for the non-verbal and musical aspects of offering creative autonomy support. However, particularly for offering higher-level creative autonomy support in the non-verbal and musical mode, significant results were found for less than half of the intervention teachers.Discussion: These results underline the importance of embracing and studying the bodily dimension as an integral part of teacher autonomy support, aimed at emergence of students’ musical creativity, in primary school music education and in teacher training. We explain how these results might be relevant for autonomy enhancing musical activities in vulnerable groups.
LINK