Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to support and maintain multiple layers of different cell types. We achieved that by integrating the mechanical stability of PHBV+P34HB, commonly used in the food storage industry, with a dECM hydrogel, which replicates organ stiffness and supports cellular survival and function. The construct was customised by adjusting the fibre arrangement and pore sizes, making it a suitable candidate for a personalised design. We showed that the polymer is degradable after precoating it with PHB depolymerase (PhaZ), with complete degradation achieved in 3–5 days and delayed by adding the hydrogel to 10 days, enabling tuneable degradation for regenerative medicine applications. Finally, as a proof of concept, we composed a three-layered tissue in vitro; each layer represented a different tissue type: epidermal, vascular, and subcutaneous layers. Possible future applications include wound healing and diabetic ulcer paths, personalised drug delivery systems, and personalised tissue implants.
LINK
The amino acid profile obtained from a fingerprint may provide valuable information on its donor. Unfortunately, the collection of chemicals from the fingerprint is often destructive to the fingerprint ridge detail. Herein we detail the use of cross-linkable solutions of dextran-methacrylate to form hydrogels capable of collecting amino acids from surfaces followed by extraction and quantification with UPLC-MS. This method allows for the amino acid profile analysis of fingerprints while allowing for their increased visualization at a later stage using the standard method of cyanoacrylate fuming followed by basic-yellow dyeing.
DOCUMENT
Nauwkeurige en snelle detectie van verontreinigingen in voedselproducten is een noodzakelijk maar vaak lastig en technisch ingewikkeld proces. Huidige gouden standaard methoden zijn vooral gebaseerd op nauwkeurige maar dure lab technieken die verontreinigingen kunnen detecteren in verschillende samples. Snellere en goedkopere beschikbare alternatieve technieken bestaan veelal uit dipstick methoden die onvoldoende nauwkeurig zijn en slechts één stof kunnen detecteren. De recente fipronil-affaire laat nogmaals zien dat, ondanks de enorme technologische vooruitgang in detectie technologie, er nog steeds een grote behoefte is aan goedkope, snelle en betrouwbare tests voor het routinematige screenen van voedselproducten. De zuivelindustrie is zeer geïnteresseerd in een snelle, handzame en kosten-effectieve methode om verontreinigingen zoals antibiotica en bacteriën in melk, wei en babyvoeding te detecteren, omdat de huidige standaard detectie methoden, die zij gebruiken, duur en zeer tijds- en arbeids-intensief zijn. Het duurt meestal uren tot dagen voordat een betrouwbaar resultaat is verkregen. Een snellere analyse van de melk bespaart enorme kosten die nu gemaakt worden met het vernietigen van grote hoeveelheden melk (waar sporen van antibiotica worden gevonden) als gevolg van de late beschikbare uitslag. Daarnaast resulteert een snellere analyse in een snellere vrijgave voor de distributie van melkproducten en draagt zo bij tot directe besparingen in operationele kosten. In samenwerking met een aantal MKB-bedrijven en andere relevante partners zal Saxion in dit project een draagbare demonstrator realiseren voor snelle, handzame en multiplexe detectie van antibiotica zoals tetracyclines in melk, gebaseerd op een multikanaals fotonische sensor prototype.. Verschillende bestaande innovatieve technologieën zoals lab-on-a-chip, microfluidica, inkjet-printing en geïntegreerde fotonische sensoren zullen in een demonstrator geïntegreerd worden om het gestelde doel te bereiken. De draagbare demonstrator is een eerste stap richting een handheld device dat in staat is om ter plaatse, zoals bij melkveehouderijen en melkfabrieken, antibiotica in melk snel en nauwkeurig te kunnen detecteren.