Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.
Over the last years a large growth in Electric Vehicles (EV) and charging infrastructure (CI) development has been observed. Particularly in metropolitan areas this growth has led to a system in which multitudes of interactions between EV users take place. While many researchers have focused on EV user charging behavior and deployment strategies for CI, little attention has been paid to conceptualizing the problem domain. This research provides a brief overview of complex systems theory, and derives six characterizing elements of complex systems that may be applicable for CI. The paper investigates both theoretically but also empirically how these characterizing elements apply for CI and provides implications for the further roll-out of CI for both policy makers and researchers. We illustrate our findings with preliminary results form ongoing research. Recommendations include the further development of simulation tools that are capable of exploring effects of e.g. non-linear behavior, feedback loops and emergence of new patterns on CI performance. In the end this paper aims to provide directions to enable policy makers to be better prepared for the anticipated exponential growth of EVs and CI.
MULTIFILE