Objectives: Children have a greater risk from radiation, per unit dose, due to increased radiosensitivity and longer life expectancies. It is of paramount importance to reduce the radiation dose received by children.This research concerns chest CT examinations on paediatric patients. The purpose of this study was to compare the image quality and the dose received from imaging with images reconstructed with filtered back projection (FBP) and five strengths of Sinogram-Affirmed Iterative Reconstruction (SAFIRE).Methods: Using a multi-slice CT scanner, six series of images were taken of a paediatric phantom. Two kVp values (80 and 110), 3 mAs values (25, 50 and 100) and 2 slice thicknesses (1 mm and 3 mm) were used. All images were reconstructed with FBP and five strengths of SAFIRE. Ten observers evaluatedvisual image quality. Dose was measured using CT-Expo.Results: FBP required a higher dose than all SAFIRE strengths to obtain the same image quality for sharpness and noise. For sharpness and contrast image quality ratings of 4, FBP required doses of 6.4 and 6.8 mSv respectively. SAFIRE 5 required doses of 3.4 and 4.3 mSv respectively. Clinical acceptance rate was improved by the higher voltage (110 kV) for all images in comparison to 80 kV, which required a higher dose for acceptable image quality. 3 mm images were typically better quality than 1 mm images.Conclusion: SAFIRE 5 was optimal for dose reduction and image quality
DOCUMENT
Background: To assess the prevalence of chronic lymphedema and trismus in patients > 6 months after head and neck cancer (HNC) treatment, and to explore how the severity of these conditions correlates with body image and quality of life. Methods: The cross-sectional sample included 59 patients, treated for HNC between six months to three years ago. Physical measurements were performed to assess the presence of external lymphedema and trismus (<36 mm). Furthermore, participants completed two questionnaires regarding body image (BIS) and quality of life (UW-QoL V4). Results: Lymphedema prevalence was 94.1% (95% CI 0.86–0.98), with a median severity score of 9 (range 0–24). Trismus prevalence in this sample was 1.2%. The median BIS score was 2, indicating a positive body image. The UW-QoL score showed a good QOL with a median of 100. Only the domain of saliva and overall related health had a lower median of 70 and 60, respectively. There was no correlation between lymphedema and body image (r = 0.08, p = 0.544). Patients with higher lymphedema scores reported poorer speech with a moderate correlation (r = −0.39, p = 0.003). Conclusion: Lymphedema is a highly prevalent, but moderately severe late side-effect of HNC with a limited impact on quality of life domains except for speech, in our cohort.
DOCUMENT
Purpose: To investigate whether standard X-ray acquisition factors for orbital radiographs are suitable for the detection of ferromagnetic intra-ocular foreign bodies in patients undergoing MRI.Method: 35 observers, at varied levels of education in radiography, attending a European Dose Optimisation EURASMUS Summer School were asked to score 24 images of varying acquisition factors against a clinical standard (reference image) using two alternative forced choice. The observers were provided with 12 questions and a 5 point Likert scale. Statistical tests were used to validate the scale, and scale reliability was also measured. The images which scored equal to, or better than, the reference image (36) were ranked alongside their corresponding effective dose (E), the image with the lowest dose equal to or better than the reference is considered the new optimum acquisition factors.Results: Four images emerged as equal to, or better than, the reference in terms of image quality. The images were then ranked in order of E. Only one image that scored the same as the reference had a lower dose. The reference image had a mean E of 3.31μSv, the image that scored the same had an E of 1.8μSv.Conclusion: Against the current clinical standard exposure factors of 70kVp, 20mAs and the use of an anti- scatter grid, one image proved to have a lower E whilst maintaining the same level of image quality and lesion visibility. It is suggested that the new exposure factors should be 60kVp, 20mAs andstill include the use of an anti-scatter grid.
DOCUMENT
In our increasingly global society, organizations face many opportunities in innovation, improved productivity and easy access to talent. At the same time, one of the greatest challenges, businesses experience nowadays, is the importance of social and/or human capital for their effectiveness and success (Backhaus and Tikoo, 2004; Mosley, 2007; Theurer et al., 2018; Tumasjan et al., 2020). High-quality employees are crucial to the competitive strength of an organization in the global economy, as these employees have a major influence on organizational reputation (Dowling at al., 2012). An important question is how, under these global circumstances, organizations and companies in the Netherlands can best be stimulated to attract and preserve social capital.Several studies have suggested the scarcity of talent and the crucial importance of gaining competitive advantage with recruitment communication to find the fit between personal and fundamental organizational characteristics and values for employees (Cable and Edwards, 2004; Bhatnagar and Srivastava, 2008; ManPower Group, 2014; European Communication Monitor (ECM), 2018). In order to become an employer of choice, organizations have to not only stand out from the crowd during the recruitment process but work on developing loyalty and a culture of trust in their relationship with employees (ECM, 2018). Employer Branding focuses on the process of promoting an organization, as the “employer of choice” to a desired target group, which an organization aims to attract and retain. This process encompasses building an identifiable and unique employer identity or, more specifically, “the promotion of a unique and attractive image” as an employer (Backhaus 2004, p. 117; Backhaus and Tikoo 2004, p. 502).One of the biggest challenges in the North of the Netherlands at the moment is the urgent need for qualified labor in the IT, energy and healthcare sectors and the excess supply of international graduates who are able to find a job in the North of the Netherlands (AWVN, 2019). Talent development, as part of the regional labor market and education policy, has been an important part of government programs and strategies in the region (VNO-NCW Noord, 2018). For instance, North Netherlands Alliance (SNN) signed a Northern Innovation Agenda for the 2014-2020 period. SNN encourages, facilitates and connects ambitions focused on the development of the Northern Netherlands. Also, the Social Economic council North Netherlands issued an advice on the labour market in the North Netherlands (SER Noord Nederland, 2017). Knowledge institutions also contribute through employability programs. Another example is the Regional Talent Agreement (Talent Akkoord) framework issued by the Groningen educational institutions, employers and employees’ organizations and regional authorities in which they jointly commit to recruiting, training, retaining and developing talent for the Northern labor market. Most of the hires with a maximum of five year of experience at companies are represented by millennials. To learn what values make an attractive brand for employees in the of the North of the Netherlands, we conducted a first study. When ranking the most important values of corporate culture which matter to young employees, they mention creative freedom, purposeful work, flexibility, work-life balance as well as personal development. Whereas attractive workplace and job security do not matter to such a degree. A positive work environment and a good relationship with colleagues are valued highly (Hein, 2019).To date, as far as we know, no other employer branding studies have been carried out for the North of the Netherlands. Further insight is needed into the role of employer branding as a powerful tool to retain talent in Northern industry in particular.The goal of this study is to provide a detailed analysis of the regional industry in the Northern Netherlands and contribute to: 1) the scientific body of knowledge about whether and how employer branding can strengthen the attractiveness of a regional industry in the labor market; 2) the application of this knowledge and insights by companies and governments in local policy development in the North of the Netherlands.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.
About half of the e-waste generated in The Netherlands is properly documented and collected (184kT in 2018). The amount of PCBs in this waste is projected to be about 7kT in 2018 with a growth rate of 3-4%. Studies indicate that a third of the weight of a PCB is made or recoverable and critical metals which we need as resources for the various societal challenges facing us in the future. Recycling a waste PCB today means first shredding it and then processing it for material recovery mostly via non-selective pyrometallurgical methods. Sorting the PCBs in quality grades (wastebins) before shredding would however lead to more flexibility in selecting when and which recovery metallurgy is to be used. The yield and diversity of the recovered metals increases as a result, especially when high-grade recycling techniques are used. Unfortunately, the sorting of waste PCBs is not easily automated as an experienced operator eye is needed to classify the very inhomogeneous waste-PCB stream in wastebins. In this project, a knowledge institution partners with an e-waste processor, a high-grade recycling technology startup and a developer of waste sorting systems to investigate the efficiency of methods for sensory sorting of waste PCBs. The knowledge gained in this project will lead towards a waste PCB sorting demonstrator as a follow-up project.