Echo intensity determined by muscle ultrasound has been proposed as an efficient method for the assessment of muscle quality. The influence of changing ultrasound parameter settings on echo intensity values was assessed using a standardized approach. In this repeated measures cross-sectional study, sixteen repeated scans of rectus femoris, gracilis, and rectus abdominis were taken in 21 middle-aged persons with a portable Mindray M7 premium ultrasound machine equipped with a linear 5.0–10.0 MHz transducer. The settings of three parameters were fixed: gain, depth, and frequency. The settings of the following adjustable parameters were changed over their entire range: dynamic range, gray map, line density, persistence, and IClear. Repeated measures analyses were performed to evaluate the effect of changing the settings on echo intensity values. In all three muscles, dynamic range, gray map, and IClear correlated significantly (rrm-values ranging between −0.86 and 0.45) with echo intensity. In all three muscles, the echo intensity values differed significantly across the dynamic range (p < 0.013), gray map (p < 0.003), and IClear (p < 0.003). In middle-aged subjects, echo intensity values of lower limb and trunk muscles are significantly related to ultrasound parameters and significantly differ across their respective setting range. For the assessment of muscle quality through ultrasound, it is suggested to fix parameter settings within their midrange in order to minimize the effect of setting-dependent factors on EI values.
Predation risk is a major driver of the distribution of prey animals, which typically show strong responses to cues for predator presence. An unresolved question is whether naïve individuals respond to mimicked cues, and whether such cues can be used to deter prey. We investigated whether playback of wolf sounds induces fear responses in naïve ungulates in a human-dominated landscape from which wolves have been eradicated since 1879. We conducted a playback experiment in mixed-coniferous and broadleaved forest that harboured three cervid and one suid species. At 36 locations, we played wolf sounds, sounds of local sheep or no sounds, consecutively, in random order, and recorded visit rate and group size, using camera traps. Visit rates of cervids and wild boar showed a clear initial reduction to playback of both wolf and sheep sounds, but the type of response differed between sound, forest type and species. For naïve wild boar in particular, responses to predator cues depended on forest type. Effects on visit rate disappeared within 21 days. Group sizes in all the species were not affected by the sound treatment. Our findings suggest that the responses of naïve ungulates to wolf sound seem to be species specific, depend on forest type and wear off in time, indicating habituation. Before we can successfully deter ungulates using predator sound, we should further investigate how different forest types affect the perception of naïve ungulates to these sounds, as responses to predator sound may depend on habitat characteristics.
MULTIFILE
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.