Op verzoek van Jelle Scheurleer: Purpose: To investigate the accuracy of dose calculation on cone beam CT (CBCT) data sets after HU-RED calibration and validation in phantom studies and clinical patients. Material and methods: Calibration of HU-RED curves for kV-CBCT were generated for three clinical protocols (H&N, thorax and pelvis) by using a Gammex RMI phantom with human tissue equivalent inserts and additional perspex blocks to account for patient scatter. Two calibration curves per clinical protocol were defined, one for the Varian Truebeam 2.0 and another for the OBI systems (Varian, Palo Ato). Differences in HU values with respect to the CT-calibration curve were evaluated for all the inserts. Four radiotherapy plans (breast, prostate, H&N and lung) were produced on an anthropomorphic phantom (Alderson) to evaluate dose differences on the kV-CBCT with the new calibration curves with respect to the CT based dose calculation. Dose differences were evaluated according to the D2%, D98% and Dmean metrics extracted from the DVHs of the plans and - evaluation (2%, 1mm) on the three planes at the isocenter for all plans. Clinical evaluation was performed on 5 patients and dose differences were evaluated as in the phantom study.
DOCUMENT
INTRODUCTION: With the introduction of digital radiography, the feedback between image quality and over-exposure has been partly lost which in some cases has led to a steady increase in dose. Over the years the introduction of exposure index (EI) has been used to resolve this phenomenon referred to as 'dose creep'. Even though EI is often vendor specific it is always a related of the radiation exposure to the detector. Due to the nature of this relationship EI can also be used as a patient dose indicator, however this is not widely investigated in literature.METHODS: A total of 420 dose-area-product (DAP) and EI measurements were taken whilst varying kVp, mAs and body habitus on two different anthropomorphic phantoms (pelvis and chest). Using linear regression, the correlation between EI and DAP were examined. Additionally, two separate region of interest (ROI) placements/per phantom where examined in order to research any effect on EI.RESULTS: When dividing the data into subsets, a strong correlation between EI and DAP was shown with all R-squared values > 0.987. Comparison between the ROI placements showed a significant difference between EIs for both placements.CONCLUSION: This research shows a clear relationship between EI and radiation dose which is dependent on a wide variety of factors such as ROI placement, body habitus. In addition, pathology and manufacturer specific EI's are likely to be of influence as well.IMPLICATIONS FOR PRACTICE: The combination of DAP and EI might be used as a patient dose indicator. However, the influencing factors as mentioned in the conclusion should be considered and examined before implementation.
DOCUMENT
OBJECTIVES: To compare low contrast detail (LCD) detectability and radiation dose for routine paediatric chest X-ray (CXR) imaging protocols among various hospitals.METHODS: CDRAD 2.0 phantom and medical grade polymethyl methacrylate (PMMA) slabs were used to simulate the chest region of four different paediatric age groups. Radiographic acquisitions were undertaken on 17 X-ray machines located in eight hospitals using their existing CXR protocols. LCD detectability represented by image quality figure inverse (IQF inv) was measured physically using the CDRAD analyser software. Incident air kerma (IAK) measurements were obtained using a solid-state dosimeter. RESULTS: The range of IQF inv, between and within the hospitals, was 1.40-4.44 and 1.52-2.18, respectively for neonates; 0.96-4.73 and 2.33-4.73 for a 1-year old; 0.87-1.81 and 0.98-1.46 for a 5-year old and 0.90-2.39 and 1.27-2.39 for a 10-year old. The range of IAK, between and within the hospitals, was 8.56-52.62 μGy and 21.79-52.62 μGy, respectively for neonates; 5.44-82.82 μGy and 36.78-82.82 μGy for a 1-year old; 10.97-59.22 μGy and 11.75-52.94 μGy for a 5-year old and 13.97-100.77 μGy and 35.72-100.77 μGy for a 10-year old. CONCLUSIONS: Results show considerable variation, between and within hospitals, in the LCD detectability and IAK. Further radiation dose optimisation for the four paediatric age groups, especially in hospitals /X-ray rooms with low LCD detectability and high IAK, are required.
DOCUMENT
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems.METHODS: An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC).RESULTS: JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density.CONCLUSION: Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified.
DOCUMENT
Abstract Aims: To lower the threshold for applying ultrasound (US) guidance during peripheral intravenous cannulation, nurses need to be trained and gain experience in using this technique. The primary outcome was to quantify the number of procedures novices require to perform before competency in US-guided peripheral intravenous cannulation was achieved. Materials and methods: A multicenter prospective observational study, divided into two phases after a theoretical training session: a handson training session and a supervised life-case training session. The number of US-guided peripheral intravenous cannulations a participant needed to perform in the life-case setting to become competent was the outcome of interest. Cusum analysis was used to determine the learning curve of each individual participant. Results: Forty-nine practitioners participated and performed 1855 procedures. First attempt cannulation success was 73% during the first procedure, but increased to 98% on the fortieth attempt (p<0.001). The overall first attempt success rate during this study was 93%. The cusum learning curve for each practitioner showed that a mean number of 34 procedures was required to achieve competency. Time needed to perform a procedure successfully decreased when more experience was achieved by the practitioner, from 14±3 minutes on first procedure to 3±1 minutes during the fortieth procedure (p<0.001). Conclusions: Competency in US-guided peripheral intravenous cannulation can be gained after following a fixed educational curriculum, resulting in an increased first attempt cannulation success as the number of performed procedures increased.
MULTIFILE
Phantom limb pain following amputation is highly prevalent as it affects up to 80% of amputees. Many amputees suffer from phantom limb pain for many years and experience major limitations in daily routines and quality of life. Conventional pharmacological interventions often have negative side-effects and evidence regarding their long-term efficacy is low. Central malplasticity such as the invasion of areas neighbouring the cortical representation of the amputated limb contributes to the occurrence and maintenance of phantom limb pain. In this context, alternative, non-pharmacological interventions such as mirror therapy that are thought to target these central mechanisms have gained increasing attention in the treatment of phantom limb pain. However, a standardized evidence-based treatment protocol for mirror therapy in patients with phantom limb pain is lacking, and evidence for its effectiveness is still low. Furthermore, given the chronic nature of phantom limb pain and suggested central malplasticity, published studies proposed that patients should self-deliver mirror therapy over several weeks to months to achieve sustainable effects. To achieve this training intensity, patients need to perform self-delivered exercises on a regular basis, which could be facilitated though the use of information and communication technology such as telerehabilitation. However, little is known about potential benefits of using telerehabilitation in patients with phantom limb pain, and controlled clinical trials investigating effects are lacking. The present thesis presents the findings from the ‘PAtient Centered Telerehabilitation’ (PACT) project, which was conducted in three consecutive phases: 1) creating a theoretical foundation; 2) modelling the intervention; and 3) evaluating the intervention in clinical practice. The objectives formulated for the three phases of the PACT project were: 1) to conduct a systematic review of the literature regarding important clinical aspects of mirror therapy. It focused on the evidence of applying mirror therapy in patients with stroke, complex regional pain syndrome and phantom limb pain. 2) to design and develop a clinical framework and a user-centred telerehabilitation for mirror therapy in patients with phantom limb pain following lower limb amputation. 3) to evaluate the effects of the clinical framework for mirror therapy and the additional effects of the teletreatment in patients with phantom limb pain. It also investigated whether the interventions were delivered by patients and therapists as intended.
DOCUMENT
Introduction: The purpose of this review is to gather and analyse current research publications to evaluate Sinogram-Affirmed Iterative Reconstruction (SAFIRE). The aim of this review is to investigate whether this algorithm is capable of reducing the dose delivered during CT imaging while maintainingimage quality. Recent research shows that children have a greater risk per unit dose due to increased radiosensitivity and longer life expectancies, which means it is particularly important to reduce the radiation dose received by children.Discussion: Recent publications suggest that SAFIRE is capable of reducing image noise in CT images, thereby enabling the potential to reduce dose. Some publications suggest a decrease in dose, by up to 64% compared to filtered back projection, can be accomplished without a change in image quality.However, literature suggests that using a higher SAFIRE strength may alter the image texture, creating an overly ‘smoothed’ image that lacks contrast. Some literature reports SAFIRE gives decreased low contrast detectability as well as spatial resolution. Publications tend to agree that SAFIRE strength threeis optimal for an acceptable level of visual image quality, but more research is required. The importance of creating a balance between dose reduction and image quality is stressed. In this literature review most of the publications were completed using adults or phantoms, and a distinct lack of literature forpaediatric patients is noted.Conclusion: It is necessary to find an optimal way to balance dose reduction and image quality. More research relating to SAFIRE and paediatric patients is required to fully investigate dose reduction potential in this population, for a range of different SAFIRE strengths.
DOCUMENT
Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom.Methods: Images were acquired by varying a set of parameters: positions (antero-posterior (AP), posteroanterior (PA) and lateral), kilo-voltage peak (kVp) (66-90), source-to-image distance (SID) (150 to 200cm), broad focus and the use of a grid (grid in/out) to analyse the impact on E and image quality(IQ). IQ was analysed applying two approaches: objective [contrast-to-noise-ratio/(CNR] and perceptual, using 5 observers. Monte-Carlo modelling was used for dose estimation. Cohen’s Kappa coefficient was used to calculate inter-observer-variability. The angle was measured using Cobb’s method on lateralprojections under different imaging conditions.Results: PA promoted the lowest effective dose (0.013 mSv) compared to AP (0.048 mSv) and lateral (0.025 mSv). The exposure parameters that allowed lower dose were 200cm SID, 90 kVp, broad focus and grid out for paediatrics using an Agfa CR system. Thirty-seven images were assessed for IQ andthirty-two were classified adequate. Cobb angle measurements varied between 16°±2.9 and 19.9°±0.9.Conclusion: Cobb angle measurements can be performed using the lowest dose with a low contrast-tonoise ratio. The variation on measurements for this was ±2.9° and this is within the range of acceptable clinical error without impact on clinical diagnosis. Further work is recommended on improvement tothe sample size and a more robust perceptual IQ assessment protocol for observers.
DOCUMENT
Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP).Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithmshas the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently.Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction.Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014).Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality.Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiationsensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.
DOCUMENT
This year, OPTIMAX was warmly welcomed by University College Dublin. For the sixth time students and teachers from Europe, South Africa, South America and Canada have come together enthusiastically to do research in the Radiography domain. As in previous years, there were several research groups consisting of PhD-, MSc- and BSc students and tutors from the OPTIMAX partner Universities or on invitation by partner Universities. OPTIMAX 2018 was partly funded by the partner Universities and partly by the participants.
DOCUMENT