Malnutrition is a frequent problem in patients with head and neck cancer. Prevention or timely treatment of malnutrition isof great importance because deteriorated nutritional status can have a negative effect on clinical outcome in head andneck cancer patients.Malnutrition is a multidimensional problem, in which a nutritional disbalance causes loss of weight and muscle mass, eitheror not accompanied by inflammatory activity, resulting in functional decline.Thus far, little is known about the role of physical activity in both the development and treatment of malnutrition in cancerpatients. Although positive effects of exercise on fatigue and quality of life have been reported, the relationship betweenphysical activity and prevention and treatment of malnutrition needs to be further elucidated.In this presentation, current insights and hypotheses on the relationship between physical activity and nutritional status inpatients with cancer will be discussed.
Objectives: The aim of this study was to assess the predictive value of PMA measurement for mortality. Background: Current surgical risk stratification have limited predictive value in the transcatheter aortic valve implantation (TAVI) population. In TAVI workup, a CT scan is routinely performed but body composition is not analyzed. Psoas muscle area (PMA) reflects a patient's global muscle mass and accordingly PMA might serve as a quantifiable frailty measure. Methods: Multi-slice computed tomography scans (between 2010 and 2016) of 583 consecutive TAVI patients were reviewed. Patients were divided into equal sex-specific tertiles (low, mid, and high) according to an indexed PMA. Hazard ratios (HR) and their confidence intervals (CI) were determined for cardiac and all-cause mortality after TAVI. Results: Low iPMA was associated with cardiac and all-cause mortality in females. One-year adjusted cardiac mortality HR in females for mid-iPMA and high-iPMA were 0.14 [95%CI, 0.05–0.45] and 0.40 [95%CI, 0.15–0.97], respectively. Similar effects were observed for 30-day and 2-years cardiac and all-cause mortality. In females, adding iPMA to surgical risk scores improved the predictive value for 1-year mortality. C-statistics changed from 0.63 [CI = 0.54–0.73] to 0.67 [CI: 0.58–0.75] for EuroSCORE II and from 0.67 [CI: 0.59–0.77] to 0.72 [CI: 0.63–0.80] for STS-PROM. Conclusions: Particularly in females, low iPMA is independently associated with an higher all-cause and cardiac mortality. Prospective studies should confirm whether PMA or other body composition parameters should be extracted automatically from CT-scans to include in clinical decision making and outcome prediction for TAVI.
Nowadays, there is particular attention towards the additive manufacturing of medical devices and instruments. This is because of the unique capability of 3D printing technologies for designing and fabricating complex products like bone implants that can be highly customized for individual patients. NiTi shape memory alloys have gained significant attention in various medical applications due to their exceptional superelastic and shape memory properties, allowing them to recover their original shape after deformation. The integration of additive manufacturing technology has revolutionized the design possibilities for NiTi alloys, enabling the fabrication of intricately designed medical devices with precise geometries and tailored functionalities. The AM-SMART project is focused on exploring the suitability of NiTi architected structures for bone implants fabricated using laser powder bed fusion (LPBF) technology. This is because of the lower stiffness of NiTi alloys compared to Ti alloys, closely aligning with the stiffness of bone. Additionally, their unique functional performance enables them to dissipate energy and recover the original shape, presenting another advantage that makes them well-suited for bone implants. In this investigation, various NiTi-based architected structures will be developed, featuring diverse cellular designs, and their long-term thermo-mechanical performance will be thoroughly evaluated. The findings of this study underscore the significant potential of these structures for application as bone implants, showcasing their adaptability for use also beyond the medical sector.