Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.
DOCUMENT
In recent years, drones have increasingly supported First Responders (FRs) in monitoring incidents and providing additional information. However, analysing drone footage is time-intensive and cognitively demanding. In this research, we investigate the use of AI models for the detection of humans in drone footage to aid FRs in tasks such as locating victims. Detecting small-scale objects, particularly humans from high altitudes, poses a challenge for AI systems. We present first steps of introducing and evaluating a series of YOLOv8 Convolutional Neural Networks (CNNs) for human detection from drone images. The models are fine-tuned on a created drone image dataset of the Dutch Fire Services and were able to achieve a 53.1% F1-Score, identifying 439 out of 825 humans in the test dataset. These preliminary findings, validated by an incident commander, highlight the promising utility of these models. Ongoing efforts aim to further refine the models and explore additional technologies.
MULTIFILE
Predation risk is a major driver of the distribution of prey animals, which typically show strong responses to cues for predator presence. An unresolved question is whether naïve individuals respond to mimicked cues, and whether such cues can be used to deter prey. We investigated whether playback of wolf sounds induces fear responses in naïve ungulates in a human-dominated landscape from which wolves have been eradicated since 1879. We conducted a playback experiment in mixed-coniferous and broadleaved forest that harboured three cervid and one suid species. At 36 locations, we played wolf sounds, sounds of local sheep or no sounds, consecutively, in random order, and recorded visit rate and group size, using camera traps. Visit rates of cervids and wild boar showed a clear initial reduction to playback of both wolf and sheep sounds, but the type of response differed between sound, forest type and species. For naïve wild boar in particular, responses to predator cues depended on forest type. Effects on visit rate disappeared within 21 days. Group sizes in all the species were not affected by the sound treatment. Our findings suggest that the responses of naïve ungulates to wolf sound seem to be species specific, depend on forest type and wear off in time, indicating habituation. Before we can successfully deter ungulates using predator sound, we should further investigate how different forest types affect the perception of naïve ungulates to these sounds, as responses to predator sound may depend on habitat characteristics.
MULTIFILE
Purpose Adding external focus of attention (EF, focus on the movement effect) may optimize current anterior cruciate ligament (ACL) injury prevention programmes. The purpose of the current study was to investigate the effects of an EF, by a visual stimulus and an internal focus, by a verbal stimulus during unexpected sidestep cutting in female and male athletes and how these effects remained over time. Methods Ninety experienced basketball athletes performed sidestep cutting manoeuvres in three sessions (S1, S2 and S3). In this randomized controlled trial, athletes were allocated to three groups: visual (VIS), verbal (VER) and control (CTRL). Kinematics and kinetics were collected at the time of peak knee frontal plane moment. Results Males in the VIS group showed a larger ver- tical ground reaction force (S1: 25.4 ± 3.1 N/kg, S2: 25.8 ± 2.9 N/kg, S3: 25.2 ± 3.2 N/kg) and knee flexion moments (S1: −3.8 ± 0.9 Nm/kg, S2: −4.0 ± 1.2 Nm/ kg, S3: −3.9 ± 1.3 Nm/kg) compared to the males in the VER and CTRL groups and to the females in the VIS group (p < 0.05). Additionally, the males in the VIS group reduced knee valgus moment and the females in the VER group reduced knee varus moment over time (n.s.). Conclusion Male subjects clearly benefit from visual feedback. Females may need different feedback modes to learn a correct movement pattern. Sex-specific learning preferences may have to be acknowledged in day by day practice. Adding video instruction or feedback to regular training regimens when teaching athletes safe movement patterns and providing individual feedback might target suboptimal long-term results and optimize ACL injury prevention programmes. Level of evidence I.
DOCUMENT
Urban delta areas require innovative and adaptive urban developments to face problems related with land scarcity and impacts of climate change and flooding. Floating structures offer the flexibility and multi-functionality required to efficiently face these challenges and demands. The impact of these structures on the environment, however, is currently unknown and research on this topic is often disregarded. This knowledge gap creates a difficulty for water authorities and municipalities to create a policy framework, and to regulate and facilitate the development of new projects.Monitoring the effects of floating structures on water quality and ecology has been difficult until now because of the poor accessibility of the water body underneath the structures. In this work, a remote controlled underwater drone equipped with water quality sensors and a video camera was used to monitor dissolved oxygen near and under floating structures. The collected data showed that most water quality parameters remain at acceptable levels, indicating that the current small scale floating structures do not have a significant influence on water quality. The underwater footage revealed the existence of a dynamic and diverse aquatic habitat in the vicinity of these structures, showing that floating structures can have a positive effect on the aquatic environment. Future floating structures projects therefore should be encouraged to proceed.
DOCUMENT
Chronic itching is a serious and uncomfortable condition. The scratch response might result in a vicious cycle of alternating itching and scratching. To develop psychological interventions for people suffering from chronic itching and to break the vicious itch-scratching-itch cycle, it is important to elucidate which environmental factors trigger itch sensations. Virtual reality (VR) techniques provide a useful tool to examine specific content characteristics in a three-dimensional (3D VR) environment and their influences on itch sensations and scratching behaviour. This article describes two experiments in which we focused on the effects of environmental information on itching and scratching behaviour. Additionally, in the second experiment, we examined the influence of having a chronic skin condition on sensitivity to itch induction. We found evidence for the importance of the content of audio–visual materials for the effectiveness in inducing feelings of itch in the observers. In both experiments, we observed significantly higher levels of perceived itch in the itch-inducing conditions than in the control condition. Moreover, the results showed that elevated levels of perceived itch were associated with an increase in scratching behaviours, which was especially salient in the contagious itch condition, in which perceived itch was accompanied by a significant increase in the number of scratches. Experiment 2 additionally showed increased perceived itch levels in participants who reported having a chronic skin condition, reflecting higher sensitivity to itch-inducing audio–visual stimuli in this group than in participants without a chronic skin condition. Based on the results we concluded that directing attention towards itch- or scratch aspects of related information in the environment and to the consequences for one’s own skin are effective tools to induce itch sensations and scratching behaviour. This knowledge provides tools for developing novel strategies in advising and treating people suffering from chronic itching and breaking the vicious itch-scratching-itch cycle.
DOCUMENT
Background: In team handball an anterior cruciate ligament (ACL) injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing the athletes to land safer. Video feedback is an effective way to provide feedback although little is known about its influence on landing technique in sport-specific situations. Objective: To test the effectiveness of a video overlay feedback method on landing technique in elite handball players. Method: Sixteen elite female handball players were assigned to a Control or Video Group. Both groups performed jump shots in a pre-test, two training sessions (TR1 & TR2) and a post-test. The Video Group received video feedback of an expert model with an overlay of their own jump shots in TR1 and TR2 whilst the Control Group did not. Main outcome measures were sagittal ankle, knee and hip angles during initial contact (IC), maximum (MAX) and range of motion (ROM), in addition to the Landing Error Scoring System (LESS) score. One 2x4 repeated measures ANOVA was conducted to analyze group, time and interaction effects of all kinematic outcome measures and the LESS score. Results: The Video Group displayed significant improvement in knee and hip flexion at IC, MAX and ROM. In addition, MAX ankle flexion and their LESS score improved an average of 8.1 in the pre-test to 4.0 in the post-test. When considering performance variables, no differences between Control Group and Video Group were found in shot accuracy or vertical jump height, whilst horizontal jump distance in the Video Group became greater over time. Conclusion: Overlay visual feedback is an effective method to improve landing kinematics during a sport-specific jump shot. Further research is now warranted to determine the long-term effects and transfer to training and game situations.
DOCUMENT
This study aimed (1) to examine the contribution of robot ZORA in achieving therapeutic and educational goals in rehabilitation and special education for children with severe physical disabilities, and (2) to discover the roles professionals attribute to robot ZORA when it is used in robot-based play interventions in rehabilitation and special education for children with severe physical disabilities. A multi-centre mixed methods study was conducted among children with severe physical disabilities in two centres for rehabilitation and one school for special education. The participating children played with robot ZORA six times during a period of 6 weeks, in individual or group sessions. Quantitative data were gathered about the contribution of ZORA in reaching individual goals for all of the participating children, using the Individually Prioritized Problem Assessment (IPPA). Playfulness was measured with a visual analogue scale (0–10) and children could indicate whether they liked the sessions using a scale consisting of smileys. Video-stimulated recall interviews were used to collect qualitative data about the different roles of ZORA. In total, 33 children and 12 professionals participated in the study. The results of the IPPA showed a significant contribution of ZORA to the achievement of (children’s) individual goals. The data gathered using the IPPA during the ZORA-based interventions showed that the largest contributions of robot ZORA lie in the domains of movement skills and communication skills. Playfulness of the sessions was 7.5 on average and 93% of the sessions were evaluated as ‘enjoyable’ by the children. Overall, ZORA could positively contribute to the achievement of individual goals for children with severe physical disabilities. According to the participating professionals the most promising roles in which robot ZORA can be used are motivator, rewarder or instructor.
DOCUMENT
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.
DOCUMENT