Objectives: to compare changes over time in the in-hospital mortality and the mortality from discharge to 30 days post-discharge for six highly prevalent discharge diagnoses in acutely admitted older patients as well as to assess the effect of separately analysing the in-hospital mortality and the mortality from discharge to 30 days post-discharge.Study design and setting: retrospective analysis of Dutch hospital and mortality data collected between 2000 and 2010.Subjects: the participants included 263,746 people, aged 65 years and above, who were acutely admitted for acute myocardial infarction (AMI), heart failure (HF), stroke, chronic obstructive pulmonary disease, pneumonia or hip fracture.Methods: we compared changes in the in-hospital mortality and mortality from discharge to 30 days post-discharge in the Netherlands using a logistic- and a multinomial regression model.Results: for all six diagnoses, the mortality from admission to 30 days post-discharge declined between 2000 and 2009. The decline ranged from a relative risk ratio (RRR) of 0.41 [95% confidence interval (CI) 0.38–0.45] for AMI to 0.77 [0.73–0.82] for HF. In separate analyses, the in-hospital mortality decreased for all six diagnoses. The mortality from discharge to 30 days post-discharge in 2009 compared to 2000 depended on the diagnosis, and either declined, remained unchanged or increased.Conclusions: the decline in hospital mortality in acutely admitted older patients was largely attributable to the lower in-hospital mortality, while the change in the mortality from discharge to 30 days post-discharge depended on the diagnosis. Separately reporting the two rate estimates might be more informative than providing an overall hospital mortality rate.
DOCUMENT
Objective: To predict mortality by disability in a sample of 479 Dutch community-dwelling people aged 75 years or older. Methods: A longitudinal study was carried out using a follow-up of seven years. The Groningen Activity Restriction Scale (GARS), a self-reported questionnaire with good psychometric properties, was used for data collection about total disability, disability in activities in daily living (ADL) and disability in instrumental activities in daily living (IADL). The mortality dates were provided by the municipality of Roosendaal (a city in the Netherlands). For analyses of survival, we used Kaplan–Meier analyses and Cox regression analyses to calculate hazard ratios (HR) with 95% confidence intervals (CI). Results: All three disability variables (total, ADL and IADL) predicted mortality, unadjusted and adjusted for age and gender. The unadjusted HRs for total, ADL and IADL disability were 1.054 (95%-CI: [1.039;1.069]), 1.091 (95%-CI: [1.062;1.121]) and 1.106 (95%-CI: [1.077;1.135]) with p-values <0.001, respectively. The AUCs were <0.7, ranging from 0.630 (ADL) to 0.668 (IADL). Multivariate analyses including all 18 disability items revealed that only “Do the shopping” predicted mortality. In addition, multivariate analyses focusing on 11 ADL items and 7 IADL items separately showed that only the ADL item “Get around in the house” and the IADL item “Do the shopping” significantly predicted mortality. Conclusion: Disability predicted mortality in a seven years follow-up among Dutch community-dwelling older people. It is important that healthcare professionals are aware of disability at early stages, so they can intervene swiftly, efficiently and effectively, to maintain or enhance the quality of life of older people.
MULTIFILE
Background: Early identification of older cardiac patients at high risk of readmission or mortality facilitates targeted deployment of preventive interventions. In the Netherlands, the frailty tool of the Dutch Safety Management System (DSMS-tool) consists of (the risk of) delirium, falling, functional impairment, and malnutrition and is currently used in all older hospitalised patients. However, its predictive performance in older cardiac patients is unknown. Aim: To estimate the performance of the DSMS-tool alone and combined with other predictors in predicting hospital readmission or mortality within 6 months in acutely hospitalised older cardiac patients. Methods: An individual patient data meta-analysis was performed on 529 acutely hospitalised cardiac patients ≥70 years from four prospective cohorts. Missing values for predictor and outcome variables were multiply imputed. We explored discrimination and calibration of: (1) the DSMS-tool alone; (2) the four components of the DSMS-tool and adding easily obtainable clinical predictors; (3) the four components of the DSMS-tool and more difficult to obtain predictors. Predictors in model 2 and 3 were selected using backward selection using a threshold of p = 0.157. We used shrunk c-statistics, calibration plots, regression slopes and Hosmer-Lemeshow p-values (PHL) to describe predictive performance in terms of discrimination and calibration. Results: The population mean age was 82 years, 52% were males and 51% were admitted for heart failure. DSMS-tool was positive in 45% for delirium, 41% for falling, 37% for functional impairments and 29% for malnutrition. The incidence of hospital readmission or mortality gradually increased from 37 to 60% with increasing DSMS scores. Overall, the DSMS-tool discriminated limited (c-statistic 0.61, 95% 0.56-0.66). The final model included the DSMS-tool, diagnosis at admission and Charlson Comorbidity Index and had a c-statistic of 0.69 (95% 0.63-0.73; PHL was 0.658). Discussion: The DSMS-tool alone has limited capacity to accurately estimate the risk of readmission or mortality in hospitalised older cardiac patients. Adding disease-specific risk factor information to the DSMS-tool resulted in a moderately performing model. To optimise the early identification of older hospitalised cardiac patients at high risk, the combination of geriatric and disease-specific predictors should be further explored.
DOCUMENT
Objective: To predict mortality by disability in a sample of 479 Dutch community-dwelling people aged 75 years or older. Methods: A longitudinal study was carried out using a follow-up of seven years. The Groningen Activity Restriction Scale (GARS), a self-reported questionnaire with good psychometric properties, was used for data collection about total disability, disability in activities in daily living (ADL) and disability in instrumental activities in daily living (IADL). The mortality dates were provided by the municipality of Roosendaal (a city in the Netherlands). For analyses of survival, we used Kaplan–Meier analyses and Cox regression analyses to calculate hazard ratios (HR) with 95% confidence intervals (CI). Results: All three disability variables (total, ADL and IADL) predicted mortality, unadjusted and adjusted for age and gender. The unadjusted HRs for total, ADL and IADL disability were 1.054 (95%-CI: [1.039;1.069]), 1.091 (95%-CI: [1.062;1.121]) and 1.106 (95%-CI: [1.077;1.135]) with p-values <0.001, respectively. The AUCs were <0.7, ranging from 0.630 (ADL) to 0.668 (IADL). Multivariate analyses including all 18 disability items revealed that only “Do the shopping” predicted mortality. In addition, multivariate analyses focusing on 11 ADL items and 7 IADL items separately showed that only the ADL item “Get around in the house” and the IADL item “Do the shopping” significantly predicted mortality. Conclusion: Disability predicted mortality in a seven years follow-up among Dutch community-dwelling older people. It is important that healthcare professionals are aware of disability at early stages, so they can intervene swiftly, efficiently and effectively, to maintain or enhance the quality of life of older people.
DOCUMENT
Objective: To predict mortality with the Tilburg Frailty Indicator (TFI) in a sample of community-dwelling older people, using a follow-up of 7 years. Setting and Participants: 479 Dutch community-dwelling people aged 75 years or older. Measurements: The TFI, a self-report questionnaire, was used to collect data about total, physical, psychological, and social frailty. The municipality of Roosendaal (a town in the Netherlands) provided the mortality dates. Conclusions and Implications: This study has shown the predictive validity of the TFI for mortality in community-dwelling older people. Our study demonstrated that physical and psychological frailty predicted mortality. Of the individual TFI components, difficulty in walking consistently predicted mortality. For identifying frailty, using the integral instrument is recommended because total, physical, psychological, and social frailty and its components have proven their value in predicting adverse outcomes of frailty, for example, increase in health care use and a lower quality of life.
MULTIFILE
BACKGROUND: Prognostic assessments of the mortality of critically ill patients are frequently performed in daily clinical practice and provide prognostic guidance in treatment decisions. In contrast to several sophisticated tools, prognostic estimations made by healthcare providers are always available and accessible, are performed daily, and might have an additive value to guide clinical decision-making. The aim of this study was to evaluate the accuracy of students', nurses', and physicians' estimations and the association of their combined estimations with in-hospital mortality and 6-month follow-up.METHODS: The Simple Observational Critical Care Studies is a prospective observational single-center study in a tertiary teaching hospital in the Netherlands. All patients acutely admitted to the intensive care unit were included. Within 3 h of admission to the intensive care unit, a medical or nursing student, a nurse, and a physician independently predicted in-hospital and 6-month mortality. Logistic regression was used to assess the associations between predictions and the actual outcome; the area under the receiver operating characteristics (AUROC) was calculated to estimate the discriminative accuracy of the students, nurses, and physicians.RESULTS: In 827 out of 1,010 patients, in-hospital mortality rates were predicted to be 11%, 15%, and 17% by medical students, nurses, and physicians, respectively. The estimations of students, nurses, and physicians were all associated with in-hospital mortality (OR 5.8, 95% CI [3.7, 9.2], OR 4.7, 95% CI [3.0, 7.3], and OR 7.7 95% CI [4.7, 12.8], respectively). Discriminative accuracy was moderate for all students, nurses, and physicians (between 0.58 and 0.68). When more estimations were of non-survival, the odds of non-survival increased (OR 2.4 95% CI [1.9, 3.1]) per additional estimate, AUROC 0.70 (0.65, 0.76). For 6-month mortality predictions, similar results were observed.CONCLUSIONS: Based on the initial examination, students, nurses, and physicians can only moderately predict in-hospital and 6-month mortality in critically ill patients. Combined estimations led to more accurate predictions and may serve as an example of the benefit of multidisciplinary clinical care and future research efforts.
DOCUMENT
Abstract Purpose To determine the predictive value of quality of life for mortality at the domain and item levels. Methods This longitudinal study was carried out in a sample of 479 Dutch people aged 75 years or older living independently, using a follow-up of 7 years. Participants completed a self-report questionnaire. Quality of life was assessed with the WHOQOL-BREF, including four domains: physical health, psychological, social relationships, and environment. The municipality of Roosendaal (a town in the Netherlands) indicated the dates of death of the individuals. Results Based on mean, all quality of life domains predicted mortality adjusted for gender, age, marital status, education, and income. The hazard ratios ranged from 0.811 (psychological) to 0.933 (social relationships). The areas under the curve (AUCs) of the four domains were 0.730 (physical health), 0.723 (psychological), 0.693 (social relationships), and 0.700 (environment). In all quality of life domains, at least one item predicted mortality (adjusted). Conclusion Our study showed that all four quality of life domains belonging to the WHOQOL-BREF predict mortality in a sample of Dutch community-dwelling older people using a follow-up period of 7 years. Two AUCs were above threshold (psychological, physical health). The findings offer health care and welfare professionals evidence for conducting interventions to reduce the risk of premature death.
DOCUMENT
Nursing Leadership is an important competence to develop in order to provide quality of care and prevent attrition of nurses. This research program looked into the perceptions and experiences of nurses on practising leadership. Next to that supporting the development of nursing leadership was addressed. The program has a mixed-method, action research design in which 75 in-depth interviews and 24 focus group interviews and quantitative data of 435 nurses form the backbone. According to hospital nurses, nursing leadership is related to proactiveness and voicing expertise in order to deliver good nursing care. Nevertheless, they do not feel fully competent and knowledge deficits were detected on aspects of the bachelor nursing profile, such as evidence based practice. Working-culture factors can either inhibit or encourage nursing leadership. The further awareness of unconsciously using expertise and knowledge deficits as well as team development towards a continuous safe learning environment are necessary steps for the enhancement of nursing leadership. A Nursing Leadership model was developed in which generic personal leadership competencies combined with expertise of the nurses' level of education and degrees form the essence of shared leadership in teams focussed on the realisation of good nursing care.
MULTIFILE
BackgroundICU patients lose muscle mass rapidly and maintenance of muscle mass may contribute to improved survival rates and quality of life. Protein provision may be beneficial for preservation of muscle mass and other clinical outcomes, including survival. Current protein recommendations are expert-based and range from 1.2 to 2.0 g/kg. Thus, we performed a systematic review and meta-analysis on protein provision and all clinically relevant outcomes recorded in the available literature.MethodsWe conducted a systematic review and meta-analyses, including studies of all designs except case control and case studies, with patients aged ≥18 years with an ICU stay of ≥2 days and a mean protein provision group of ≥1.2 g/kg as compared to <1.2 g/kg with a difference of ≥0.2 g/kg between protein provision groups. All clinically relevant outcomes were studied. Meta-analyses were performed for all clinically relevant outcomes that were recorded in ≥3 included studies.ResultsA total of 29 studies published between 2012 and 2022 were included. Outcomes reported in the included studies were ICU, hospital, 28-day, 30-day, 42-day, 60-day, 90-day and 6-month mortality, ICU and hospital length of stay, duration of mechanical ventilation, vomiting, diarrhea, gastric residual volume, pneumonia, overall infections, nitrogen balance, changes in muscle mass, destination at hospital discharge, physical performance and psychological status. Meta-analyses showed differences between groups in favour of high protein provision for 60-day mortality, nitrogen balance and changes in muscle mass.ConclusionHigh protein provision of more than 1.2 g/kg in critically ill patients seemed to improve nitrogen balance and changes in muscle mass on the short-term and likely 60-day mortality. Data on long-term effects on quality of life are urgently needed.
MULTIFILE
Objective. Hospital in Motion is a multidimensional implementation project aiming to improve movement behavior during hospitalization. The purpose of this study was to investigate the effectiveness of Hospital in Motion on movement behavior. Methods. This prospective study used a pre-implementation and post-implementation design. Hospital in Motion was conducted at 4 wards of an academic hospital in the Netherlands. In each ward, multidisciplinary teams followed a 10-month step-by-step approach, including the development and implementation of a ward-specific action plan with multiple interventions to improve movement behavior. Inpatient movement behavior was assessed before the start of the project and 1 year later using a behavioral mapping method in which patients were observed between 9:00 am and 4:00 pm. The primary outcome was the percentage of time spent lying down. In addition, sitting and moving, immobility-related complications, length of stay, discharge destination home, discharge destination rehabilitation setting, mortality, and 30-day readmissions were investigated. Differences between pre-implementation and post-implementation conditions were analyzed using the chi-square test for dichotomized variables, the Mann Whitney test for non-normal distributed data, or independent samples t test for normally distributed data. Results. Patient observations demonstrated that the primary outcome, the time spent lying down, changed from 60.1% to 52.2%. For secondary outcomes, the time spent sitting increased from 31.6% to 38.3%, and discharges to a rehabilitation setting reduced from 6 (4.4%) to 1 (0.7%). No statistical differences were found in the other secondary outcome measures. Conclusion. The implementation of the multidimensional project Hospital in Motion was associated with patients who were hospitalized spending less time lying in bed and with a reduced number of discharges to a rehabilitation setting. Impact. Inpatient movement behavior can be influenced by multidimensional interventions. Programs implementing interventions that specifically focus on improving time spent moving, in addition to decreasing time spent lying, are recommended.
DOCUMENT