In this work, in situ measurements of the radio frequency electromagnetic field exposure have been conducted for an indoor massive MIMO 5G base station operating at 26–28 GHz. Measurements were performed at six different positions (at distances between 9.94 and 14.32 m from the base station), of which four were in line-of-sight and two were in non-line-of-sight. A comparison was performed between the measurements conducted with an omnidirectional probe and with a horn antenna, for scenarios with and without a user equipment used to actively create an antenna traffic beam from the base station towards the measurement location. A maximum exposure of 171.9 mW/m2 was measured at a distance of 9.94 m from the base station. This is below 2% of the ICNIRP reference level. Moreover, the feasibility to measure the power per resource element of the Synchronization Signal Block - which can be used to extrapolate the maximum exposure level - with a conventional spectrum analyzer was shown by comparison with a network decoder.
MULTIFILE
Floating urbanization is a promising solution to reduce the vulnerability of cities against climate change, population growth or land scarcity. Although this type of construction introduces changes to aquatic systems, there is a lack of research studies addressing potential impacts. Water quality data collected under/near floating structures were compared with the corresponding parameters measured at the same depth at open water locations by (i) performing scans with underwater drones equipped with in situ sensors and video cameras and (ii) fixing two sets of continuous measuring in situ sensors for a period of several days/months at both positions. A total of 18 locations with different types of floating structures were considered in this study. Results show small differences in the measured parameters, such as lower dissolved oxygen concentrations or higher temperature measured underneath the floating structures. The magnitudes of these differences seem to be linked with the characteristics and type of water system. Given the wide variety and types of water bodies considered in this study, results suggest that water quality is not critically affected by the presence of the floating houses. Underwater images of biofouling and filter feeders illustrate the lively ecosystems that can emerge shortly after the construction of floating buildings.
DOCUMENT
10554
MULTIFILE
Background:Neuropsychiatric symptoms (NPS) are common in affected individuals and can be challenging for (in)formal caregivers. Therefore, they are also referred to as challenging behaviors (CBs). Sensor technology measuring context and behavior can be assistive to effectively manage CBs in an objective fashion. Sensors can help support healthcare professionals, such as nurses, by enabling remote monitoring and alarming on early-stage behavioral changes associated with CBs. This might/ will improve the quality of life (QoL) for both caregivers and clients living in a nursing homes (NH).In the project “MOnitoring Onbegrepen Gedrag bij Dementie met sensortechnologie” (MOOD-Sense), we aim to develop such a monitoring system. Our research focuses on two questions 1) How to develop and implement a monitoring system within the context of nursing homes with parameters on environment, physiology, and behavior, identify and process relevant precursors of challenging behavior with this monitoring system and 2) gain insight in which behaviors are challenging according to nurses and how they are described. This will be represented in an ontology such that sensor data can be translated into the same conceptual information.Methods:The first research question will be examined with a set of experiments in the field (in NH) with an iterative approach. Insights from previous experiments on usability and added value of sensors will be used to improve successive experiments. During each experiment, multiple participants (clients with dementia and CBs) are monitored with both ambient and wearable sensors. For the second research question a qualitative approach is employed, using focus groups (FG) and consensus methods. These FGs will be held amongst nursing staff who are involved in daily care tasks for people with dementia. Subsequently, consensus methods are used to align behavioral descriptors/labels.Results:early findings will be presented at the symposiumDiscussion:Within this project we expect to find precursors of challenging behavior in a personalized fashion based on nurse’s expert knowledge and sensor data. In order to develop a monitoring system that can be embedded within NH’s, real-time alarming, in-situ behavior recognition and trustworthiness are part of our technological requirements. Just-in-time interventions may then be deployed to prevent behavior escalation or the persistence of undesirable situations.
LINK
Lozingen van gezuiverd industrieel afvalwater kunnen soms een bedreiging vormen voor de kwaliteit van het ontvangende oppervlaktewater. Online bewaking met biologische meetsystemen (biomonitoring) kan helpen bij het vroegtijdig detecteren van veranderingen in de effluentkwaliteit die mogelijk leiden tot verhoogde toxiciteitsdruk op het ontvangende oppervlaktewater. Onderzoek door het Centre of Expertise Water Technology (CEW) en WLN heeft duidelijk gemaakt dat deselectie en implementatie van online biomonitoren ten behoeve van waterkwaliteitsbewaking maatwerk is. Dit artikel gaat in op de praktische toepasbaarheid van biologische bewakingssystemen op het effluent van de Integrale Afvalwater Zuiveringsinstallatie (IAZI) van Sitech in Geleen.
DOCUMENT
We aim to set up a continuous low cost monitoring system for electromagnetic fields in the Netherlands, so that a trend in exposure to 5G signals can be observed. A number of options will be explored for this, such as software-defined radio and measurement nodes for specific 5G frequencies. We developed and tested low cost dedicated measurement nodes for four 5G bands: the 800, 1400, 2100 and 3500 MHz bands. Generally, the error is less than 1 dB and close to dynamic range limits (-65 to 5 dBm) the error increases to 3 dB.
DOCUMENT
This paper compares different low-cost sensors that can measure (5G) RF-EMF exposure. The sensors are either commercially available (off-the-shelf Software Defined Radio (SDR) Adalm Pluto) or constructed by a research institution (i.e., imec-WAVES, Ghent University and Smart Sensor Systems research group (S3R), The Hague University of Applied Sciences). Both in-lab (GTEM cell) and in-situ measurements have been performed for this comparison. The in-lab measurements tested the linearity and sensitivity, which can then be used to calibrate the sensors. The in-situ testing confirmed that the low-cost hardware sensors and SDR can be used to assess the RF-EMF radiation. The variability between the sensors was 1.78 dB on average, with a maximum deviation of 5.26 dB. Values between 0.09 V/m and 2.44 V/m were obtained at a distance of about 50 m from the base station. These devices can be used to provide the general public and governments with temporal and spatial 5G electromagnetic field values.
DOCUMENT
The rapid implementation of large scale floating solar panels has consequences to water quality and local ecosystems. Environmental impacts depend on the dimensions, design and proportions of the system in relation to the size of the surface water, as well as the characteristics of the water system (currents, tidal effects) and climatic conditions. There is often no time (and budget) for thorough research into these effects on ecology and water quality. A few studies have addressed the potential impacts of floating solar panels, but often rely on models without validation with in situ data. In this work, water quality sensors continuously monitored key water quality parameters at two different locations: (i) underneath a floating solar park; (ii) at a reference location positioned in open water. An underwater drone was used to obtain vertical profiles of water quality and to collect underwater images. The results showed little differences in the measured key water quality parameters below the solar panels. The temperature at the upper layers of water was lower under the solar panels, and there were less detected temperature fluctuations. A biofouling layer on the floating structure was visible in the underwater images a few months after the construction of the park
DOCUMENT
Caribbean coral reefs are in decline and the deployment of artificial reefs, structures on the sea bottom that mimic one or more characteristics of a natural reef, is increasingly often considered to sustain ecosystem services. Independent of their specific purposes, it is essential that artificial reefs do not negatively affect the already stressed surrounding habitat. To evaluate the ecological effects of artificial reefs in the Caribbean, an analysis was performed on 212 artificial reefs that were deployed in the Greater Caribbean between 1960 and 2018, based on cases documented in grey (n = 158) and scientific (n = 54) literature. Depending on the availability of data, reef type and purpose were linked to ecological effects and fisheries management practices around the artificial reefs. The three most common purposes to deploy artificial reefs were to create new dive sites (41%), toperform research (22%) and to support ecosystem restoration (18%), mainly by stimulating diversity. Ship wrecks (44%), reef balls© (13%) and piles of concrete construction blocks (11%) were the most-often deployed artificial reef structures and metal and concrete were the most-used materials. The ecological development onartificial reefs in the Caribbean appeared to be severely understudied. Research and monitoring has mostly been done on small experimental reefs that had been specifically designed for science, whereas the most commonly deployed artificial reef types have hardly been evaluated. Studies that systematically compare the ecological functioning of different artificial reef types are virtually non-existent in the Caribbean and should be a research priority, including the efficacy of new designs and materials. Comparisons with natural reef ecosystems are scarce. Artificial reefs can harbor high fish densities and species richness, but both fish and benthos assemblages often remain distinct from natural ecosystems. Studies from other parts of the world show that artificial reefs can influence the surrounding ecosystem by introducing non-indigenous species and by leaking iron. As artificial reefs attract part of their marine organisms from surrounding habitats, intensive exploitation by fishers, without clear management, can adversely affect the fish stocks in the surrounding area and thus counteract any potential ecosystem benefits. This study shows that over 80% of artificial reefs in the Caribbean remain accessible tofishers and are a risk to the surrounding habitat. To ensure artificial reefs and their fisheries do not negatively affect the surrounding ecosystem, it is imperative to include artificial reefs, their fisheries and the surrounding ecosystem in monitoring programs and management plans and to create no-take zones around artificial reefs that are not monitored.
DOCUMENT
We report on a first field test in which miniaturized sensor motes were used to explore and inspect an operational pipeline by performing in situ measurements. The spherical sensor motes with a diameter of 39 mm were equipped with an inertial measurement unit (IMU) measuring 3-D acceleration, rotation, and magnetic field, as well as an ultrasound emitter. The motes were injected into the pipeline and traversed a 260-m section of it with the flow of water. After the extraction of the motes from the pipeline, the recorded IMU data were read out for the off-line analysis. Unlike dead-reckoning techniques, we analyze the IMU data to reveal structural information about the pipeline and locate pipe components, such as hydrants and junctions. The recorded data show different and distinct patterns that are a result of the fluid dynamics and the interaction with the pipeline. Using the magnetic data, pipe sections made from different materials and pipe components are identified and localized. A preliminary analysis on the motes' interaction with the pipeline shows differences in pipe wall roughness and locates structural anomalies. The results of this field test show that sensor motes can be used as a versatile and cost-effective tool for exploration and inspection of a wide variety of pipelines.
DOCUMENT