Limited evidence is available about (non)-representativeness of participants in health-promoting interventions. The Dutch Healthy Primary School of the Future (HPSF)-study is a school-based study aiming to improve health through altering physical activity and dietary behaviour, that started in 2015 (registered in ClinicalTrials.gov on14-06-2016, NCT02800616). The study has a response rate of 60%. A comprehensive non-responder analysis was carried out, and responders were compared with schoolchildren from the region and the Netherlands using a cross-sectional design. External sources were consulted to collect non-responder, regional, and national data regarding relevant characteristics including sex, demographics, health, and lifestyle. The Chi-square test, Mann-Whitney U test, or Student's t-test were used to analyse differences.
The rise of financial technology (fintech) driven business models in banking poses a challenge for financial regulators. While the positive effects on the banking sector in terms of greater diversity and competition are generally recognized and encouraged by regulators, the nature of fintech business models may increase the risk of financial instability. Regulators are exploring ways to resolve this dilemma. The paper in hand makes a contribution to the literature by providing a framework for resolving the dilemma that is evaluated in the context of the regulatory response to the rise of fintech credit in the Netherlands. The semi-structured interviews which we conducted with four senior Dutch regulators resulted in three areas that–from their perspective–required urgent action: fintech credit companies need to lower the risk of overlending, increase pricing transparency, and improve lending standards. These findings were confirmed by the results of they survey among fintech credit clients. The current regulatory response to the rise of fintech in banking in the Netherlands provides an interesting case study that delineates the features of the future regulation of fintech in banking.
Background: Advanced medical technologies (AMTs), such as respiratory support or suction devices, are increasingly used in home settings and incidents may well result in patient harm. Information about risks and incidents can contribute to improved patient safety, provided that those are reported and analysed systematically. Objectives: To identify the frequency of incidents when using AMTs in home settings, the effects on patient outcomes and the actions taken by nurses following identification of incidents. Methods: A cross-sectional study of 209 home care nurses in the Netherlands working with infusion therapy, parenteral nutrition or morphine pumps, combining data from a questionnaire and registration forms covering more than 13 000 patient contacts. Descriptive statistics were used. Results: We identified 140 incidents (57 adverse events; 83 near misses). The frequencies in relation to the number of patient contacts were 2.7% for infusion therapy, 1.3% for parenteral nutrition and 2.6% for morphine pumps. The main causes were identified as related to the product (43.6%), the organisation of care (27.9%), the nurse as a user (15.7%) and the environment (12.9%). 40% of all adverse events resulted in mild to severe harm to the patient. Incidents had been discussed in the team (70.7%), with the patient/informal caregiver(s) (50%), or other actions had been taken (40.5%). 15.5% of incidents had been formally reported according to the organisation's protocol. Conclusions: Most incidents are attributed to product failures. Although such events predominantly cause no harm, a significant proportion of patients do suffer some degree of harm. There is considerable underreporting of incidents with AMTs in home care. This study has identified a discrepancy in quality circles: learning takes place at the team level rather than at the organisational level.
Public safety is under enormous pressure. Demonstrations regularly result in riots and VIPs are often threatened even at their homes ! Criminal graffiti-gangs are threatening security professionals and costing the Dutch railways (NS), causing a loss of 10 M€ yearly. The safety incidents often escalate quickly, therefore, they require a very quick and correct scaling up of the security professionals. To do so, it is necessary for the security professionals to get very quick and accurate overview of the evolving situation using Mobile Drone intervention unit for quick response (Mobi Dick). The successfully completed project The Beast (9/11) has delivered a universal docking station with an automatic security drone. The drone takes off from a permanently installed docking station. Nest Fly emerged as a startup from this RAAK project, and it has already developed the prototype further to a first product. Based on extensive interaction with security professionals, it has been concluded that a permanently installed docking station is not suitable for all emergency cases. Therefore, a mobile, car-roof top mounted, docking station with a ready-for-take-off drone is required for the more severe and quickly escalating incidents. These situations require a drone taking off from the car-roof top mounted docking station while the vehicles continue to drive towards the incident. In this RAAK KIEM, a feasibility study will be executed by developing a car-roof top docking station. The concept will functionally be designed within the project (task 1). The two required subsystems car roof docking station (task 2) and dynamic take-off & landing (task 3) will technically be developed and integrated (task 4). The outcome of the experiments in this task will show the feasibly of the idea. Task 5 will ensure the results are disseminated in new cooperation’s, publications, and educational products.
Prompt and timely response to incoming cyber-attacks and incidents is a core requirement for business continuity and safe operations for organizations operating at all levels (commercial, governmental, military). The effectiveness of these measures is significantly limited (and oftentimes defeated altogether) by the inefficiency of the attack identification and response process which is, effectively, a show-stopper for all attack prevention and reaction activities. The cognitive-intensive, human-driven alarm analysis procedures currently employed by Security Operation Centres are made ineffective (as opposed to only inefficient) by the sheer amount of alarm data produced, and the lack of mechanisms to automatically and soundly evaluate the arriving evidence to build operable risk-based metrics for incident response. This project will build foundational technologies to achieve Security Response Centres (SRC) based on three key components: (1) risk-based systems for alarm prioritization, (2) real-time, human-centric procedures for alarm operationalization, and (3) technology integration in response operations. In doing so, SeReNity will develop new techniques, methods, and systems at the intersection of the Design and Defence domains to deliver operable and accurate procedures for efficient incident response. To achieve this, this project will develop semantically and contextually rich alarm data to inform risk-based metrics on the mounting evidence of incoming cyber-attacks (as opposed to firing an alarm for each match of an IDS signature). SeReNity will achieve this by means of advanced techniques from machine learning and information mining and extraction, to identify attack patterns in the network traffic, and automatically identify threat types. Importantly, SeReNity will develop new mechanisms and interfaces to present the gathered evidence to SRC operators dynamically, and based on the specific threat (type) identified by the underlying technology. To achieve this, this project unifies Dutch excellence in intrusion detection, threat intelligence, and human-computer interaction with an industry-leading partner operating in the market of tailored solutions for Security Monitoring.
Despite the vast potential drone technologies have, their integration to our society has been slow due to restricting regulations. Recently, a new EU-wide drone regulation has been published. This regulation is intended to harmonize the non-uniform national regulations across EU. It also relaxes the existing restrictions and allows previously prohibited operations that have significant socio-economic and technological impacts, such as autonomous BVLOS flights even over populated areas. However, there are challenges with regard to specifics and accessibilities of the required technological & procedural prerequisite this regulation entails. There is, therefore, a demand from SMEs for practical knowledge on technological and procedural aspects of a safe, robust and BVLOS operable security drone with short and long-term autonomy that fully complies to the new drone regulation. The required drone technologies include robust obstacle avoidance, intelligence failsafe for robust, reliable and safe autonomous flights with long-term autonomy capabilities. The operational procedures include SORA, pre/in/post-flight analysis and ROC/LUC permissions. In this project, these two aspects will be addressed in an integral manner. The consortium recognizes that developing such advanced security drone in two years is ambitious. Yet, they firmly believe that it is realizable due to the complementary expertise of the consortium and their commitment for the success of the project. With this project, the knowledge institutes will enrich their practical knowledge in the area of autonomous and BVLOS capable drones, operational procedures, risk analysis and mitigations. The partner companies will be equipped with the necessary technologies, operation permission and knowledge on optimal operation procedures to be at the forefront and benefit from the exploding market opportunities when the new regulation is fully implemented in July 2022. Moreover, this project will also make a demonstrable contribution to the renewal of higher professional education.