This research aims to find relevant evidence on whether there is a link between air capacity management (ACM) optimization and airline operations, also considering the airline business model perspective. The selected research strategy includes a case study based on Paris Charles de Gaulle Airport to measure the impact of ACM optimization variables on airline operations. For the analysis we use historical data which allows us to evaluate to what extent the new schedule obtained from the optimized scenario disrupts airline planned operations. The results of this study indicate that ACM optimization has a substantial impact on airline operations. Moreover, the airlines were categorized according to their business model, so that the results of this study revealed which category was the most affected. In detail, this study revealed that, on the one hand, Full-Service Cost Carriers (FSCCs) were the most impacted and the presented ACM optimization variables had a severe impact on slot allocation (approximately 50% of slots lost), fuel burn accounted as extra flight time in the airspace (approximately 12 min per aircraft) and disrupted operations (approximately between 31% and 39% of the preferred assigned runways were changed). On the other hand, the comparison shows that the implementation of an optimization model for managing the airport capacity, leads to a more balanced usage of runways and saves between 7% and 8% of taxi time (which decreases fuel emission).
MULTIFILE
By use of a literature review and an environmental scan four plausible future scenarios will be created, based on the research question: How could the future of backpack tourism look like in 2030, and how could tourism businesses anticipate on the changing demand. The scenarios, which allow one to ‘think out of the box’, will eventually be translated into recommendations towards the tourism sector and therefore can create a future proof company strategy.
In this study we use aggregated weighted scores of environmental effects to study environmental influences on well-being and happiness. To this end, we split a sample of Netherlands Twin Register (NTR) participants into a training (N =4857) and test (N =2077) sample. In the training sample, we use elastic net regression to estimate effect sizes for associations between life satisfaction and two sets of environmental variables: one based on self- report socioenvironmental data, and one based on objective physical environmental data. Based on these effect sizes, we create two poly-environmental scores (PES-S and PES-O, for self-reports and objective data respectively). In the test sample, we perform association analyses between different measures of well-being and the two PESs. We find that the PES-S explains ~36% of the variance in well-being, while the PES-O does not significantly contribute to the model. Variance in other well-being measures (i.e., different life satisfaction domains, subjective happiness, quality of life, flourishing, psychological well-being, self-rated health, depressive problems, and loneliness) are explained to varying extents by the PESs, ranging from 6.36% (self-rated health) to 36.66% (loneliness). These predictive values did not change during the COVID-19 pandemic (N =3214). Validating the PES-S in the UK biobank (N =40,614), we find that the UK biobank PES-S explains about ~12% of the variance in happiness. Lastly, we examine if there is any indication for gene-environment correlation (rGE), the phenomenon where one’s genetic predisposition influences exposure to the environment, by associating the PESs with polygenic scores (PGS) in a sample of Netherlands Twin Register (NTR) and UK Biobank participants. While the PES and PGS were not correlated in the NTR sample, they were correlated in the larger UK biobank sample, indicating the potential presence of rGE. We discuss several limitations pertaining to our dataset, such as a potential influence of common method bias, and reflect on how PESs might be used in future research.
MULTIFILE