Het pand van Ultraware heeft al enkele jaren geen gasaansluiting meer. Dankzij verschillende aanpassingen van de klimaatsystemen is de stroomrekening sinds die tijd gelijk gebleven, terwijl nu ook de warmtepomp met diezelfde stroom moet worden aangedreven. Vanuit de persoonlijke missie “De wereld een beetje mooier achterlaten dan hoe we hem hebben gevonden.”, is de ambitie ontstaan om niet één groenste pand, maar misschien wel honderdduizend groenste panden te realiseren. De nieuwste generatie kantoorpanden wordt al energieneutraal opgeleverd, maar het overgrote deel van de panden in de markt is meer dan 15 jaar oud. Kantoorpanden die je kunt slopen. Maar wanneer je het liefst cradle to cradle werkt is dat eigenlijk geen oplossing. Het idee is een systeem te ontwikkelen om niet alleen te bewijzen dat zo’n oud pand energieneutraal kan worden, maar dit ook daadwerkelijk te doen. Ultraware, Cosinuss en de Hanzehogeschool hebben de handen ineen geslagen om deze ambitie te realiseren via het Smart Indoor Climate project. Doelstelling van het project is een zelflerend product te ontwikkelen waarmee bestaande gebouwen een optimaal comfort voor de gebruikers realiseren met een minimaal energieverbruik door verstandig (slim) om te gaan met en automatisch te schakelen van alle apparatuur.Ondertussen is het eerste prototype gebouwd in een leegstaande ruimte in het pand aan de Lauwers 18. Het prototype stuurt nu drie ruimtes aan en wordt verder uitgerold om het hele pand van Ultraware aan te sturen. Tegelijkertijd vinden verschillende gesprekken plaats om het systeem uit te rollen in een tweede pand. Op basis van positieve resultaten zal dan een nieuw bedrijf worden gestart, om het product daadwerkelijk naar de markt te brengen. Het product richt zich voorlopig uitsluitend op kantoorpanden van 15 jaar of ouder, waarbij de eigenaar ook de gebruiker is van het gebouw. In de toekomst wordt overwogen uit te breiden naar panden met een andere functie, nieuwere panden en/of, afhankelijk van hoe wetgeving zich ontwikkeld op zowel huurders als gebouweigenaren die zelf niet de gebruiker zijn van hun pand.
DOCUMENT
MULTIFILE
Ondanks de toegenomen virtualisering van ons werk en de daarmee samenhangende nieuwe werkvormen is het kantoor voor veel mensen nog steeds de belangrijkste plek waar het werk wordt gedaan. Daarmee is het kantoor ook een plek waar veel tijd wordt doorgebracht. Maar hoe is de situatie feitelijk? En hoe beleven medewerkers het comfort in de kantoorgebouwen? De Indoor Comfort Index©, afgekort ICI, geeft inzicht. Het doel van het onderzoek is om inzichtelijk te maken hoe medewerkers het binnenklimaat op een bepaald moment beleven. Verschillen en overeenkomsten tussen reële en gepercipieerde situaties worden ook inzichtelijk gemaakt. Met de resultaten krijgt de organisatie een gedetailleerd beeld van het binnenklimaat.
DOCUMENT
This study explores if multiple alterations of the classrooms' indoor environmental conditions, which lead to environmental conditions meeting quality class A of Dutch guidelines, result in a positive effect on students' perceptions and performance. A field study, with a between-group experimental design, was conducted during the academic course in 2020–2021. First, the reverberation time (RT) was lowered in the intervention condition to 0.4 s (control condition 0.6 s). Next, the horizontal illuminance (HI) level was raised in the intervention condition to 750 lx (control condition 500 lx). Finally, the indoor air quality (IAQ) in both conditions was improved by increasing the ventilation rate, resulting in a reduction of carbon dioxide concentrations, as a proxy for IAQ, from ~1100 to <800 ppm. During seven campaigns, students' perceptions of indoor environmental quality, health, emotional status, cognitive performance, and quality of learning were measured at the end of each lecture using questionnaires. Furthermore, students' objective cognitive responses were measured with psychometric tests of neurobehavioural functions. Students' short-term academic performance was evaluated with a content-related test. From 201 students, 527 responses were collected. The results showed that the reduction of the RT positively influenced students' perceived cognitive performance. A reduced RT in combination with raised HI improved students' perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students' ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students' perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknown.
DOCUMENT
To understand how transition across different thermal zones in a building impacts the thermal perception of occupants, the current work examines occupant feedback in two work environments — nursing staff in hospital wards and the workers in an office. Both studies used a mix of subjective surveys and objective measurements. A total of 96 responses were collected from the hospital wards while 142 were collected from the office. The thermal environment in the hospital wards was perceived as slightly warm on the ASHRAE thermal sensation scale (mean TSV = 1.2), while the office workers rated their environment on the cool side (mean TSV = 0.15). The results also show that when the transitions were across temperature differences within 2 °C, the thermal perception was not impacted by the magnitude of the temperature difference — as reflected in occupant thermal sensation and thermal comfort/thermal acceptability vote. This would imply that the effect of temperature steps on thermal perception, if any, within these boundaries, was extremely short lived. These findings go towards establishing the feasibility of heterogeneous indoor thermal environments and thermal zoning of workspaces for human comfort.
DOCUMENT
Blue-green roofs have been utilized and studied for their enhanced water storage capacity compared to conventional roofs or extensive green roofs. Nonetheless, research about the thermal effect of blue-green roofs is lacking. The goal of this research is to study the thermal effect of blue-green roofs in order to assess their potential for shielding the indoor environment from outdoor temperature extremes (cold- and heat-waves). In this field study, we examined the differences between blue-green roofs and conventional gravel roofs from the perspective of the roof surface temperatures and the indoor temperatures in the city of Amsterdam for late 20th century buildings. Temperature sensor (iButtons) values indicate that outside surface temperatures for blue-green roofs are lower in summer and fluctuate less during the whole year than temperatures of conventional roofs. Results show that for three warm periods during summer in 2021 surface substrate temperatures peaked on average 5°C higher for gravel roofs than for blue-green roofs. Second, during both warm and cold periods, the temperature inside the water crate layer was more stable than the roof surface temperatures. During a cold period in winter, minimum water crate layer temperatures remained 3.0 o C higher than other outdoor surface temperatures. Finally, also the variation of the indoor temperature fluctuations of locations with and without blue-green roofs have been studied. Locations with blue-green roofs are less sensitive to outside air temperature changes, as daily temperature fluctuations (standard deviations) were systematically lower compared to conventional roofs for both warm and cold periods.
DOCUMENT
This study examines the impact of moderate and high lighting and indoor air quality (IAQ) conditions on students’ well-being during a regular academic course in higher education. To determine the precise contribution of these two indoor environmental factors, students’ perceptions of their well-being were examined with the Positive and Negative Affect, Basic Emotional Process, and Karolinska Sleepiness Scale. Data were collected from 83 students, resulting in 285 responses, distributed across four combinations of moderate and high IAQ conditions, resp. > 800 ppm ≤ 950 ppm carbon dioxide (CO2) and < 800 ppm CO2, and moderate and high horizontal illuminance (HI) levels, resp. 500 lx and 750 lx. The results indicated that high HI levels did not enhance students’ perceived well-being compared to moderate levels. However, high IAQ conditions significantly contributes to students’ well-being, compared to moderate conditions. Interaction effects between the two factors were observed at moderate conditions.
DOCUMENT
While the optimal mean annual temperature for people and nations is said to be between 13 °C and 18 °C, many people live productive lives in regions or countries that commonly exceed this temperature range. One such country is Australia. We carried out an Australia-wide online survey using a structured questionnaire to investigate what temperature people in Australia prefer, both in terms of the local climate and within their homes. More than half of the 1665 respondents (58%) lived in their preferred climatic zone with 60% of respondents preferring a warm climate. Those living in Australia's cool climate zones least preferred that climate. A large majority (83%) were able to reach a comfortable temperature at home with 85% using air-conditioning for cooling. The preferred temperature setting for the air-conditioning devices was 21.7 °C (SD: 2.6 °C). Higher temperature set-points were associated with age, heat tolerance and location. The frequency of air-conditioning use did not depend on the location but rather on a range of other socio-economic factors including having children in the household, the building type, heat stress and heat tolerance. We discuss the role of heat acclimatisation and impacts of increasing air-conditioning use on energy consumption.
MULTIFILE
The indoor air quality (IAQ) in classrooms in higher education can influence in-class activities positively. In this context, the actual IAQ and students' perceived IAQ (PIAQ), perceived cognitive performance (PCP), and short-term academic performance (SAP) were examined in two identical classrooms during regular academic courses. During the lecture, key performance indicators (KPI) for the IAQ, i.e. carbon dioxide concentration, particulate matter 2.5, and total volatile organic compounds, were measured. After the lecture, responses of 163 students were collected with a validated self-composed questionnaire and a cognitive test, which covered topics discussed during the lecture. A significant association between the IAQ KPI and the PIAQ was found (p < .000). The PIAQ significantly predicted the PCP (p < .05) and the PCP significantly predicted the SAP score (p < .01). These results indicate that the IAQ in classrooms is associated with the PIAQ and PCP, and therefore is associated with students' SAP.
DOCUMENT
There is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied. During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users. The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. S Summary 9 This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and shortterm academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknown Finally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms. Summary 10 The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.
LINK