The benefits of having a high indoor environmental quality (IEQ) for a healthy life and optimal performance are well known. In addition, research has been executed on the effects of indoor environmental parameters such as (day)light, sound/ acoustics, temperature, and air quality on people living with dementia.
DOCUMENT
Background and aim – In this study, it is pre-supposed that the indoor environmental conditions of classrooms can contribute to the quality of the educational process. Thermal, acoustic and visual conditions and indoor air quality (IAQ) may be extremely supportive in order to support the in-class tasks of teachers and students. This study explores the influence of these conditions on the perceived comfort and quality of learning of students in higher education. Methodology – In a case study design, the actual IEQ of 34 classrooms which are spread over four school buildings in North Netherlands and 276 related student perceptions were collected. The measurements consisted of in situ physical measurements. At the same moment the perceived indoor environmental quality (PIEQ) and the perceived quality of learning (PQL) of students were measured with a questionnaire. Results – Observed are high carbon dioxide concentrations and high background noise levels. A relation was observed between perceived acoustic and visual conditions, IAQ, and the PQL indicating that a poor IEQ affects the PQL. A linear regression analyses showed that in this study the perceived impact on the quality of learning was mainly caused by perceived acoustic comfort. Originality – With the applied innovative measuring instrument it is possible to measure both the actual IEQ as well as the PIEQ and PQL. This method can also be used to assess a reference and intervention condition. Practical or social implications – The applied measuring instrument provides school management with information about the effectiveness of improved IEQ and students’ satisfaction, which can be the basis for further improvement.
LINK
Teachers and students need good learning environments to perform well. In this study it is pre-supposed that the spatial properties of classrooms can contribute to the quality of the educational process. Thermal, acoustic and visual conditions and indoor air quality (IAQ) may be extremely powerful in order to support the in-class tasks of teachers and students. But what are the optimal conditions? And do schools provide optimal indoor 2019 ISES ISIAQ Joint Annual Meeting – Abstracts | 362 environmental conditions? Research shows that adequate ventilation and thermal comfort in classrooms could improve academic performance of students. However, different studies also suggest that poor indoor environmental quality in classrooms are common and, in some cases, even unhealthy. This study investigates the relationship between indoor air quality (IAQ), perceived indoor air quality (PIAQ) and building-related symptomsof students in university classrooms via subjective assessment and objective measurement. This study was carried out in 59 classrooms of a university of applied sciences in the northern part of the Netherlands during heatingseason. Responses from 366 students were obtained through a questionnaire. Results shows that carbon dioxide concentrations (CO2) exceed minimum Dutch guidelines in 36% of the observed classrooms. Moreover, after a 40 minute class this raised to 45% of the observed classes. Poor IAQ can affect teachers and students level of attention, cause arousal and increase the prevalence of building-related symptoms. A significant correlation was found between CO2 concentrations and PIAQ and between PIAQ and the ability to concentrate, tiredness and dry skin. The research findings imply that increased CO2 concentrations will affect the PIAQ of students and may cause inability to concentrate, increased tiredness and dry skin. These building-related symptoms can cause distraction and affect the academic performance of students negatively. It is highly recommended to improve IAQ in classrooms by offering better indoor environmental conditions through reducing CO2 concentrations.
DOCUMENT
This study explores if multiple alterations of the classrooms' indoor environmental conditions, which lead to environmental conditions meeting quality class A of Dutch guidelines, result in a positive effect on students' perceptions and performance. A field study, with a between-group experimental design, was conducted during the academic course in 2020–2021. First, the reverberation time (RT) was lowered in the intervention condition to 0.4 s (control condition 0.6 s). Next, the horizontal illuminance (HI) level was raised in the intervention condition to 750 lx (control condition 500 lx). Finally, the indoor air quality (IAQ) in both conditions was improved by increasing the ventilation rate, resulting in a reduction of carbon dioxide concentrations, as a proxy for IAQ, from ~1100 to <800 ppm. During seven campaigns, students' perceptions of indoor environmental quality, health, emotional status, cognitive performance, and quality of learning were measured at the end of each lecture using questionnaires. Furthermore, students' objective cognitive responses were measured with psychometric tests of neurobehavioural functions. Students' short-term academic performance was evaluated with a content-related test. From 201 students, 527 responses were collected. The results showed that the reduction of the RT positively influenced students' perceived cognitive performance. A reduced RT in combination with raised HI improved students' perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students' ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students' perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknown.
DOCUMENT
Teachers and students need good learning environments to perform well. In this study, it is pre-supposed that the spatial properties of classrooms are important facilitators of the educational process. Ideally, school buildings in general and classrooms in particular should influence the educational process positively by providing a healthy and comfortable built environment. A healthy and comfortable indoor environment is provided by optimal conditions for IAQ, thermal comfort, acoustic comfort and visual comfort. A pleasant temperature, fresh air, good soundscape and lighting conditions will support the in-class tasks of lecturers and students. But do schools provide optimal environmental learning conditions? Maintaining adequate ventilation and thermal comfort in classrooms could significantly improve academic achievement of students. A first orientating literature study reveals that that classroom conditions are far from optimal and in some cases even unhealthy and affect the performance of teachers and students negatively. Overall, evidence suggests that poor indoor environment quality in schools is common and adversely influences the performance and attendance of students, primarily through health effects from indoor pollutants. Based on this evidence, it is highly recommended to improve environmental conditions in classrooms in higher education in The Netherlands by offering a better indoor air quality and thermal conditions and by improving the acoustic and lighting conditions.
DOCUMENT
BACKGROUND: The care sector for persons with disabilities considers the physical environment relevant for the quality of life of people with intellectual disabilities. However, scientific evidence is limited. OBJECTIVE: To obtain evidence regarding comforting and encouraging environments and to develop an overview of studies addressing the effect of the physical environment on people with intellectual disabilities. METHODS: A scoping review, accompanied by expert panels and case findings combining scientific evidence and knowledge from practice, was performed to investigate the interaction between challenging behaviour and the physical environment. Between January and March 2020, several scientific databases were searched in the English, Dutch, and German language for relevant studies. Social media, care professionals, and experts in building physics were consulted. RESULTS: Studies on building-related factors as passive interventions and care- or therapy-related interventions could be distinguished. The majority of the studies report on building-related factors such as sound, acoustics, light, and colours and their influence on behaviour. Specific guidelines are lacking on how to adjust the indoor environment to an environment that is safe, comforting and encouraging for people displaying challenging behaviour. Proposed solutions are case-based. CONCLUSION: In future studies individual cases could be studied in a more in-depth manner, aligned and categorised to the building-related factors and to the expressions of challenging behaviour.
LINK
This study examines the impact of moderate and high lighting and indoor air quality (IAQ) conditions on students’ well-being during a regular academic course in higher education. To determine the precise contribution of these two indoor environmental factors, students’ perceptions of their well-being were examined with the Positive and Negative Affect, Basic Emotional Process, and Karolinska Sleepiness Scale. Data were collected from 83 students, resulting in 285 responses, distributed across four combinations of moderate and high IAQ conditions, resp. > 800 ppm ≤ 950 ppm carbon dioxide (CO2) and < 800 ppm CO2, and moderate and high horizontal illuminance (HI) levels, resp. 500 lx and 750 lx. The results indicated that high HI levels did not enhance students’ perceived well-being compared to moderate levels. However, high IAQ conditions significantly contributes to students’ well-being, compared to moderate conditions. Interaction effects between the two factors were observed at moderate conditions.
DOCUMENT
Backgroundand aim – In this study, it is pre-supposed that the indoor environmental conditions of classrooms can contribute to the quality of the educational process. Thermal, acoustic and visual conditions and indoor air quality (IAQ) may be extremely supportive in order to support the in-class tasks of teachers and students. This study explores the influence of these conditions on the perceived comfort and quality of learning of students in higher education.Methodology– In a case study design, the actual IEQ of 34 classrooms which are spread over four school buildings in North Netherlands and 276 related student perceptions were collected. The measurements consisted of in situ physical measurements. At the same moment the perceived indoor environmental quality(PIEQ) and the perceived quality of learning (PQL) of students were measured with a questionnaire.Results – Observedare high carbon dioxide concentrations and high background noise levels. Arelation was observed between perceived acoustic and visual conditions, IAQ,and the PQL indicating that a poor IEQ affects the PQL. A linear regressionanalyses showed that in this study the perceived impact on the quality oflearning was mainly caused by perceived acoustic comfort.Originality– With the applied innovative measuring instrument it is possible to measure both the actual IEQ as well as the PIEQ and PQL. This method can alsobe used to assess a reference and intervention condition.Practical or social implications – The applied measuring instrument provides schoolmanagement with information about the effectiveness of improved IEQ and students’ satisfaction, which can be the basis for further improvement.Type ofpaper – Research paper.
LINK
Not much is known about the favourable indoor air quality in long term care facilities (LTCFs), where older adults suffering from dementia live. Older adults, especially those who suffer from dementia, are more sensible to the indoor environment. However, no special requirements for the indoor air in long term care facilities exist. Due to the decrease in cognition function, it is hard to evaluate comfort and health in this group. Nevertheless, infectious diseases are a persistent problem. Based on literature an assessment methodology has been developed to analyse LTCFs to determine if differences in building characteristics and Heating, Ventilation and Air Conditioning (HVAC) systems influence the spread of airborne infectious diseases. The developed methodology is applied in seven long term care facilities in the Netherlands. After that, the methodology has been evaluated and its feasibility and applicability are discussed. From this study, it can be concluded that this method has potential to evaluate, compare LTCFs, and develop design guidelines for these buildings. However, some adjustments to the methodology are necessary to achieve this objective. Therefore, the relation between the indoor environment and infection risk is not yet analysed, but a consistent procedure to analyse this link is provided.
LINK
The indoor air quality (IAQ) in classrooms in higher education can influence in-class activities positively. In this context, the actual IAQ and students' perceived IAQ (PIAQ), perceived cognitive performance (PCP), and short-term academic performance (SAP) were examined in two identical classrooms during regular academic courses. During the lecture, key performance indicators (KPI) for the IAQ, i.e. carbon dioxide concentration, particulate matter 2.5, and total volatile organic compounds, were measured. After the lecture, responses of 163 students were collected with a validated self-composed questionnaire and a cognitive test, which covered topics discussed during the lecture. A significant association between the IAQ KPI and the PIAQ was found (p < .000). The PIAQ significantly predicted the PCP (p < .05) and the PCP significantly predicted the SAP score (p < .01). These results indicate that the IAQ in classrooms is associated with the PIAQ and PCP, and therefore is associated with students' SAP.
DOCUMENT