The design and realization of a healthy indoor environment is a challenge that is investigated from different perspectives at the unit Building Physics and Systems (BPS; Faculty of Architecture, Building and Planning) of Eindhoven University of Technology. Performance requirements (for instance, with respect to air quality, thermal comfort and lighting) and performance based assessment methods are the point-of-departure, focusing at computational techniques supporting the design process. Different specific application fields such as dwellings, offices, schools, but also, operating theatres, churches, musea and multifunctional stadiums, underline the applied approach that is part of the research within the unit. In the design of healthy environments, the performance based design assessment is crucial in arriving at innovative design solutions and optimized indoor and outdoor environments. In this assessment computational support tools and experimental verification play an important role. However, assessing the right indicators in an objective way, applying the correct tools and correct application of these tools is not yet well established. Alongside, developments are still ongoing. The work performed in the unit by the different researchers relates to the research questions that can be derived from this notice. The paper gives an introduction to the Unit BPS and presents a brief overview of recent and ongoing research. An extensive list of references is provided for further reading and supports the conclusion that healthy environments can and should be addressed from a wide angle.
LINK
CC-BY-NC-ND This paper was presented at the IADIS Multi Conference on Computer Science and Information Systems MCCSIS2020 There is an increasing interest in indoor occupation and guidance information for business and societal purposes. Scientific literature has paid attention to various ways of detecting occupation using different sensors as data source including various algorithms for estimating occupation rates from this data. Gaining meaningful insights from the data still faces challenges because the potential benefits are not well understood. This study presents a proof-of-concept of an indoor occupation information system, following the design science methodology. We review various types of sensor data that are typically available or easy-to-install in buildings such as offices, classrooms and meeting rooms. This study contributes to current research by incorporating business requirements taken from expert interviews and tackling one of the main barriers for business by designing an affordable system on a common existing infrastructure. We believe that occupation information systems call for further research, in particular also in the context of social distancing because of covid19.
MULTIFILE
Travelling independently in an urban environment is challenging for people with a visual impairment (PVI). Current Wayfinding-apps lack detailed environmental information and are often not fully accessible. With the aim to design a wayfinding solution that facilitates independent travel and incorporates PVI needs and wishes, we deployed a cocreation design approach with PVI and professionals as co-creators. Our combination of different co-creation techniques and iterative prototyping expands the related research on wayfinding solutions and allowed us to zoom-in on specific features. Our approach started with a userrequirements analysis through selfexperience sessions, observations and focus groups. This was followed by iterative prototyping with user evaluations in controlled indoor and outdoor environments. Over a period of two years we created an accessible wayfinding solution in co-creation with 31 PVI and 19 professionals. This resulted in an optimized accessible interface, a personalized route, personalized wayfinding instructions and detailed orientation and environmental information. Lessons learned for co- design with PVI included setting up an accessible workshop environment, applying diverse evaluation methods and involving reoccurring participants.
Autonomous Guided Vehicles (AGV) worden hedendaags breed toegepast in verschillende sectoren als agri, logistiek en zorg. De taken die AGV’s verrichten zijn veelal gericht op het indoor transporteren van goederen en vereisen daarom een precieze en robuuste locatiebepaling. Indoor lokalisatie is een ‘key-technology’ daar het in allerlei toepassingsgebieden een fundamentele rol speelt. Tot op heden is er geen algemeen toepasbare techniek voorhanden en is het noodzakelijk om de omgeving uit te rusten met een op maat gemaakt lokalisatiesysteem wat duur, tijdrovend en inflexibel is. Een veelbelovende techniek is Magnetic-Simulataneous-Localisation-And-Mapping (MagSLAM). Deze techniek is berust op een verstoord aardmagnetisch veld door de aanwezigheid van vele ‘indoor’ ferromagnetische structuren. Deze verstoringen zijn specifiek voor de plek binnen het gebouw en zodoende als informatiebron gezien kunnen worden. Deze wijze biedt een aantal fundamentele voordelen ten opzichte van camera, radio of tag gebaseerde lokalisatiesystemen. Het doel van dit KIEM-project is een onderzoek naar de vraag in hoeverre we het magnetisch veld als informatieprovider kunnen gebruiken om het lokalisatievraagstuk voor AGV’s te kunnen helpen. De belangrijkste onderzoekvraag daarbij is “Hoe kunnen we de MagSLAM-technologie opwerken en inpassen in een AGV-systeem?” Daarbij rekening houdend met uitdagingen als kalibratie, fusie van sensordata (bijvoorbeeld odometrie) en het robuust zijn voor grote inductiestromen (bijvoorbeeld motoren en laadcircuits). Saxion en haar partners zetten zich de komende jaren in op de sleuteltechnologieën voor robotica als perception, navigation, cognition en artificial-intelligence welke allen integraal onderdeel vormen in dit KIEM project. Het project zal uit 4 fases bestaan: allereerst een inventarisatie van huidige MagSLAM-algoritmiek en AGVpositioneringssystemen (IST), een systeem- en gebruikerseisen onderzoek (SOLL) en tenslotte een analyse om de technologie op te werken en te passen (GAP).