Fraeylemaborg is a noble house in an earthquake-stricken area of the Netherlands due to the induced seismicity events in the region. The structure is located in the middle of the town of Slochteren which gave its name to the largest gas field in the world upon its discovery in 1959. The gas extraction has caused small-magnitude shallow earthquakes during the last decade, damaging not only the residential inventory but also the historical structures in the area. The main building of Fraeylemaborg sits on an artificial island surrounded by water channels, rendering the problem of earthquake response even more complicated. A small part of the main structure on the island was built in the 14th century, while the construction of additional parts and morphological alterations had taken place until the 18th century. The structure has been subjected to several small magnitude earthquakes causing damages on the load bearing system. An extensive renovation and repair of damages took place in recent years, however the latest seismic events imposed again damage to the structure. This paper presents a project of monitoring, assessment and diagnosis of problems for the Fraeylemaborg, the most important “borg” of the region, underlining the particularities of the induced seismicity problem. The FE model has been calibrated by using ambient vibration tests. Combination of earthquake and soil settlement loads have been applied on the calibrated model. The paper develops scenarios that help in explaining the reasons behind the damages on this structure during the recent shallow and low-magnitude induced seismicity earthquakes.
LINK
In case of induced seismicity, expectations from a structural monitoring system are different than in the case of natural seismicity. In this paper, monitoring results of a historical building in Groningen (Netherlands) in case of induced seismicity has been presented. Results of the monitoring, particularities of the monitoring in case of induced earthquakes, as well as the usefulness and need of various monitoring systems for similar cases are discussed. Weak soil properties dominate the structural response in the region; thus, the ground water monitoring as well as the interaction of soil movements with the structural response has also been scrutinized. The proposed study could be effectively used to monitor historical structures subjected to induced seismicity and provide useful information to asset owners to classify the structural health condition of structures in their care.It was shown that the in-plane cracks at the building would normally not be expected in this structure during small induced earthquakes happening in Groningen. One explanation provided here is that the soil parameters, such as shrinking of water-sensitive soil layers, in combination with small earthquakes, may cause settlements. The soil effects may superimpose with the earthquake effects eventually causing small cracks and damage.
Collapses of school or dormitory buildings experienced in recent earthquakes raise the issue of safety as a major challenge for decision makers. A school building is ‘just another structure’ technically speaking, however, the consequences of a collapse in an earthquake could lead to social reactions in the complex aftermath of a seismic tremor more than any other type of structure may possibly cause. In this paper a school building that collapsed during 2011 Tabanli, Van Earthquake in eastern Turkey, is analysed in order to identify the possible reasons that led to collapse. Apart from the inherent deficiencies of RC buildings built in Turkey in the 80's and 90's, its structural design exhibits a strikingly high asymmetry. In the analyses conducted, much attention has been given to the direction of the earthquake load and its coincidence with the bi-axial structural response parameters. The failure of the structure to comply with the 1975 Code, in vigor at the time of construction, has also been evaluated with respect to the structure’s collapse. Among the parameters that controlled the collapse, the high plan asymmetry and the coincidence of the vulnerable directions with the dominant shaking direction were critical, as well as the underestimation of the seismic hazard and the lateral design force level, specified by the then Turkish Earthquake Code.
LINK