Introduction and theoretical background In the past few years, there has been a growing interest in the specific position of beginning teacher educators. In the book 'Becoming a teacher Educator' (Swennen & Van der Klink, 2009) several chapters deal with this subject. In conclusion, teacher educators have to deal with stress and uncertainty during their first years in the profession. They have to find a place within the university (organisational induction) as well as to grow into the role of teacher educator (professional induction). Swennen, Shagrir & Cooper (2009) give some examples of organizational induction which beginning teacher educators encounter, such as workload (a combination of new tasks and the wish to perform these tasks well) or a sense of isolation (being the only one with this problem, being thrown into the deep, no 'peers' in the same situation). Murray (2008) also describes professional induction. Beginning teacher educators have to get used to several things: being confronted with teaching students (young adults), uncertainty about the sufficiency of their subject knowledge, and uncertainty about their role as teacher educator being a 'second order teacher' (Murray and Male, 2005). Design of an induction program At Fontys Teacher College Tilburg, the Netherlands each year, new teacher educators get started. According to a quick scan amongst beginning teacher educators in their first year, many of them would like some kind of support. Supportive aspects which are mentioned are partially organisational related (getting to know the institute and its rules), partially related to the organisation of the work (planning, workload) and partially related to the content of the work (how to deal with young adult learners, theory about teaching methods). At Fontys University of Applied Science, we would like to support beginning teacher educators in order to retain them for the organisation and for the profession. To support the new colleagues, a special induction period was designed to support their grow within the organisation and the profession. The induction period consisted of two components: (1) personal support from a 'buddy' e.g a colleague, 2) weekly meetings in which an experienced colleague supports a small group of beginning teacher educators. Evaluation of the induction program This induction program was offered to all new colleagues during academic year 2010-2011. What is gained out of the program by new colleagues was investigated through an evaluative inquiry. In this inquiry, a questionnaire was used and some interviews were held. At the conference in April 2012, the results of the evaluation will be presented. Aditionally, we will also discuss some recommendations for the induction of beginning teacher educators. References Murray, J. and T. Male (2005). Becoming a teacher educator: evidence from the field. Teaching and teacher Education 21 (2005), 125-142. Elsevier Ltd. Murray, J. (2008) Teacher educators' induction into Higher Education: work-based learning in the micro communities of teacher Education. European Journal of teacher Education, Vol 31, no 2, 117-133 Swennen, Anja & Marcel van der Klink (eds) (2009). Becoming a teacher educator. Theory and practice for Teacher Educators. Springer Science+business Media B.V. Swennen, Shagrir & Cooper (2009) Becoming a teacher educator: Voices of beginning teacher educators, 91-102 in: Swennen, Anja & Marcel van der Klink (eds) (2009). Becoming a teacher educator. Theory and practice for Teacher Educators. Springer Science+business Media B.V.
This paper discusses an Induction Generator (IG) system that provides regulated voltage at any load condition. It utilizes the classical self-excitation principle but, in addition to that, it makes use of a current regulated PWM inverter to control the output voltage magnitude. It is primarily intended for micro hydro plants to be used in rural areas, where the cost of conventional distribution system is high, and the water resources are available to drive an unregulated low hear turbine. The proposed topology is presented, followed by an analysis of the control structure. The methodology is validated via simulation studies.
Het Smart Mold Design Netwerk project is een verkennend onderzoek waarin haalbaarheid van ‘slim malontwerp’ wordt onderzocht. Smart Mold Design (SMD) is namelijk een nieuwe wijze van malontwerp waarin vrijere vormgeving door 3D-printtechnologie mogelijkheden biedt om verwarming en koeling van producten in mallen directer en daarmee (tijds-)efficiënter te laten verlopen. Het verwarmingsprincipe lijkt daarbij op dat van inductiekookplaten, namelijk contactloos verwarmen d.m.v. een magnetisch wisselveld. En voor optimale koeling zou het koelmedium zo dicht mogelijk bij het product (in de mal) moeten kunnen worden gebracht en dient een vergroting van het contactoppervlak met het koelmedium plaats te vinden. Uiteraard moet de interne malconstructie nog steeds voldoende weerstand bieden tegen druk- en temperatuurcycli van persprocessen. Echter, op dit moment kan deze voorgestelde combinatie van optimalisaties in verwarming en koeling nog niet worden toegepast en is tevens de mate van productiesnelheid en efficiëntieverbetering niet in te schatten. Het onderzoek resulteert in: - Kennis over technische haalbaarheid van SMD; - Kennis over optimale thermische vormgeving; - Kennis over grenzen van vrije vormgeving in 3D-printen, en - Disseminatie over de haalbaarheid van een dergelijk malontwerp. Middels dit project levert de nieuwe samenwerking tussen Doeko (mal, matrijs en tooling producent; mkb), K3D (engineering en producent van 3D-metaalprinting) en TM-Induction Heating (industriële inductie verwarming; mkb) met de Hogeschool van Arnhem en Nijmegen daarmee kennis over de technische en organisatorische haalbaarheid van de verwachte malontwikkeling. Daarnaast zal dit project de behoefte aan, en inzicht in de mogelijkheden van, deze ontwikkeling verder in kaart brengen. Zo worden de uitkomsten gebruikt voor een scherpere vraagarticulatie en het vormen van een breed gedragen innovatienetwerk (onder meer de auto-industrie uit grote behoefte) bij grootschaliger vervolgonderzoek. Dit projectplan omschrijft de achterliggende ideeën, de rolverdeling van partners, en de benadering om de gestelde doelen te behalen.