The European Commission aims for a full circular economy (CE), an economy that aims to reuse all resources in 2050. CE is a promising way to increase welfare and wellbeing while decreasing environmental footprints. Industrial symbiosis, in which companies exchange residuals for resource efficiency, is essential to the circular transition. However, many companies are hesitant to implement business models for industrial symbiosis because of the various roles, stakes, opinions, and resulting uncertainties for business continuity.This dissertation supports researchers, professionals, and students in understanding and shaping circular business models for industrial symbiosis networks through collaborative modelling and simulation methods. Three theoretical perspectives, design science research, complex adaptive socio-technical systems, and circular business model innovation, shed light on designing business models for industrial symbiosis. A serious game and agent-based models were developed in multiple case studies with researchers, practitioners, and students. These were then used to design circular business models and explore their efficacy under uncertain conditions, such as various behavioural intentions of potential partners in diverse natural and societal contexts.This thesis advances business model design and experimentation by integrated simulation of social and technical aspects of industrial symbiosis. Furthermore, the research shows how simulations facilitate learning processes in designing circular business models. Ultimately, the thesis equips researchers, practitioners, and students with knowledge, tools, and methods to shape a circular economy.
DOCUMENT
This is a repository containing an agent-based model (code, data, documents and results) of Industrial Symbiosis Network implementation. The repository is related to the publication:Lange, K.P., Korevaar, G., Nikolic, I., Herder, P.M., 2021. Actor Behaviour and Robustness of Industrial Symbiosis Networks: An Agent-Based Modelling Approach, 2020:64:4. JASSS. https://doi.org/10.18564/JASSS.4635The purpose of the model is to explore the influence of actor behaviour, combined with environment and business model design, on the survival rates of Industrial Symbiosis Networks (ISN), and the cash flows of the agents. We define an ISN to be robust, when it is able to run for 10 years, without falling apart due to leaving agents.The model simulates the implementation of local waste exchange collaborations for compost production, through the ISN implementation stages of awareness, planning, negotiation, implementation, and evaluation.One central firm plays the role of waste processor in a local composting initiative. This firm negotiates with other firms to become a supplier of their organic residual streams. The waste suppliers in the model can decide to join the initiative, or to have the waste brought to the external waste incinerator. The focal point of the model are the company-level interactions during the implementation or ending of synergies.The model consists of three types of actors, waste suppliers, processor, and incinerators. The modeled waste supplier and processor are part of the ISN. In the model these agent types negotiate and evaluate the outcomes by means of the Theory of Planned Behavior. The modeled incinerator is part of the external environment. This agent acts as the infinite sink of all waste flows, taking up op the waste that is not used in the local composting initiative.
DOCUMENT
Industrial Symbiosis Networks (ISNs) consist of firms that exchange residual materials and energy locally, in order to gain economic, environmental and/or social advantages. In practice, ISNs regularly fail when partners leave and the recovery of residual streams ends. Regarding the current societal need for a shift towards sustainability, it is undesirable that ISNs should fail. Failures of ISNs may be caused by actor behaviour that leads to unanticipated economic losses. In this paper, we explore the effect of these behaviours on ISN robustness by using an agent-based model (ABM). The constructed model is based on insights from both literature and participatory modelling in three real-world cases. It simulates the implementation of synergies for local waste exchange and compost production. The Theory of Planned Behaviour (TPB) was used to model agent behaviour in time-dependent bilateral negotiations and synergy evaluation processes. We explored model behaviour with and without TPB logic across a range of possible TPB input variables. The simulation results show how the modelled planned behaviour affects the cash flow outcomes of the social agents and the robustness of the network. The study contributes to the theoretical development of industrial symbiosis research by providing a quantitative model of all ISN implementation stages, in which various behavioural patterns of entrepreneurs are included. It also contributes to practice by offering insights on how network dynamics and robustness outcomes are not only related to context and ISN design, but also to actor behaviour.
DOCUMENT
Symbiotic Urban Agriculture Networks (SUANs) are a specific class of symbiotic networks that intend to close material and energy loops from cities and urban agriculture. Private and public stakeholders in SUANs face difficulties in the implementation of technological and organisational design interventions due to the complex nature of the agricultural and urban environment. Current research on the dynamics of symbiotic networks, especially Industrial Symbiosis (IS), is based on historical data from practice, and provides only partly for an understanding of symbiotic networks as a sociotechnical complex adaptive system. By adding theory and methodology from Design Science, participatory methods, and by using agent-based modelling as a tool, prescriptive knowledge is developed in the form of grounded and tested design rules for SUANs. In this paper, we propose a conceptual Design Science method with the aim to develop an empirically validated participatory agent-based modelling strategy that guides sociotechnical design interventions in SUANs. In addition, we present a research agenda for further strategy, design intervention, and model development through case studies regarding SUANs. The research agenda complements the existing analytical work by adding a necessary Design Science approach, which contributes to bridging the gap between IS dynamics theory and practical complex design issues.
DOCUMENT
Recent challenges such like climate, demographic, political, economy and market changes are the foundation for the establishment of the Regional Cooperative Westerkwartier (RCW) in the Northern Netherlands. This RCW is managing a vast range of regional programs and projects developed by multi-stakeholder groups within the region. These stakeholders are representatives of market, public administration, education, research and civil society. All the activities of the cooperative focus on strengthening the regional economy. One of the major programs is the development of a regional food chain (RFC) based on cooperation between small and medium sized enterprises and corporate purchasers. The cooperative is identifying its role within this RFC to develop this chain in an effective way. This article reflects the results of a literature study in the fields of green supply chain management and industrial symbiosis to understand the most important factors of chain development and enterprise symbiosis. Based on these results multiple in-depth interviews and a survey have been conducted. This results in a list of factors, ranked according to their importance for small and medium-sized enterprises. In the role of a RFC-agent the cooperative should focus on creating trust, achieving one overall goal and ensuring clear agreements within the RFC. Surprisingly, the factor “achieving a fair distribution of costs and benefits” throughout the chain is not as important as was expected to be. Based on these ranked factors the role of the RFC-agent has been clarified and an additional circular chain business model can be developed.
DOCUMENT
Technical conditions and actor behavior both affect the evolution of Industrial Symbiosis Networks (ISNs) that exchange local materials and energy in a Circular Economy. In order to design interventions that shape ISNs toward financially robust exchanges, it is necessary to understand the effects of different actor behaviors during waste exchange negotiations. This study aimed to show to what extent and how the financial robustness of ISNs is influenced by negotiation behavior of ISN firms. We created an agent-based model based on empirical data and literature, in which the Theory of Planned Behavior (TPB) can be added to a tit-for-tat negotiation process. The model showed that the added self-evaluation and feedback to behavioral intention and behavior of actors is crucial for the sta-bility of ISNs. In addition, model simulations revealed divergent financial results for waste suppliers when we compare different design scenarios, indicating that the model contributes to understanding effects of design interventions in ISNs. In the future, we will calibrate the model with more empirical evidence, and ex-tend the experiments with other scenarios.
DOCUMENT
The viability of novel network-level circular business models (CBMs) is debated heavily. Many companies are hesitant to implement CBMs in their daily practice, because of the various roles, stakes and opinions and the resulting uncertainties. Testing novel CBMs prior to implementation is needed. Some scholars have used digital simulation models to test elements of business models, but this this has not yet been done systematically for CBMs. To address this knowledge gap, this paper presents a systematic iterative method to explore and improve CBMs prior to actual implementation by means of agent-based modelling and simulation. An agent-based model (ABM) was co-created with case study participants in three Industrial Symbiosis networks. The ABM was used to simulate and explore the viability effects of two CBMs in different scenarios. The simulation results show which CBM in combination with which scenario led to the highest network survival rate and highest value captured. In addition, we were able to explore the influence of design options and establish a design that is correlated to the highest CBM viability. Based on these findings, concrete proposals were made to further improve the CBM design, from company level to network level. This study thus contributes to the development of systematic CBM experimentation methods. The novel approach provided in this work shows that agent-based modelling and simulation is a powerful method to study and improve circular business models prior to implementation.
DOCUMENT
The dairy sector in the Netherlands aims for a 30% increase in efficiency and 30% carbon dioxide emission reduction compared to the reference year of 1990, and a 20% share of renewable energy, all by the year 2020. Anaerobic Digestion (AD) can play a substantial role in achieving these aims. However, results from this study indicate that the AD system is not fully optimized in combination with farming practices regarding sustainability. Therefore, the Industrial Symbiosis concept, combined with energy and environmental system analysis, Life Cycle Analysis and modeling is used to optimize a farm-scale AD system on four indicators of sustainability (i.e., energy efficiency, carbon footprint, environmental impacts and costs). Implemented in a theoretical case, where a cooperation of farms share biomass feedstocks, a symbiotic AD system can significantly lower external energy consumption by 72 to 92%, carbon footprint by 71 to 91%, environmental impacts by 68 to 89%, and yearly expenditures by 56 to 66% compared to a reference cooperation. The largest reductions and economic gains can be achieved when a surplus of manure is available for upgrading into organic fertilizer to replace fossil fertilizers. Applying the aforementioned symbiotic concept to the Dutch farming sector can help to achieve the stated goals indicated by the Dutch agricultural sector for the year 2020.
DOCUMENT
This is a serious game called Re-Organise. It is a cooperativeboard game about creating closed loops in the circular economy. The game represents an agro-industrial park in which different types of companies aim to use each other's waste streams as a material and/or energy resource. To do so, the players need to collaborate and (often need to) invest in processing technologies. The game is licenced CC-BY. To use it, the supplementary materials can be downloaded for printing. We kindly ask you to cite this game according to the pure reference.
MULTIFILE
The ‘Grand Challenges’ of our times, like climate change, resource depletion, global inequity, and the destruction of wildlife and biodiversity can only be addressed by innovating cities. Despite the options of tele-working, tele-trading and tele-amusing, that allow people to participate in ever more activities, wherever they are, people are resettling in cities at an unprecedented speed. The forecasted ‘rurification’ of society did not occur. Technological development has drained rural society from its main source of income, agriculture, as only a marginal fraction of the labour force is employed in agriculture in the rich parts of the world. Moreover, technological innovation created new jobs in the IT and service sectors in cities. Cities are potentially far more resource efficient than rural areas. In a city transport distances are shorter, infrastructures can be applied to provide for essential services in a more efficient way and symbiosis might be developed between various infrastructures. However, in practice, urban infrastructures are not more efficient than rural infrastructures. This paper explores the reasons why. It digs into the reasons why the symbiotic options that are available in cities are not (sufficiently) utilised. The main reason for this is not of an economic nature: Infrastructure organisations are run by experts who are part of a strong paradigmatic community. Dependence on other organisations is regarded as limiting the infrastructure organisation’s freedom of action to achieve its own goals. Expert cultures are transferred in education, professional associations, and institutional arrangements. By 3 concrete examples of urban systems, the paper will analyse how various paradigms of experts co-evolved with evolving systems. The paper reflects on recent studies that identified professional education as the initiation into such expert paradigms. It will thereby relate lack of urban innovation to the monodisciplinary education of experts and the strong institutionalised character of expertise. https://doi.org/10.1007/978-3-319-63007-6_43 LinkedIn: https://www.linkedin.com/in/karelmulder/
MULTIFILE