Permeable pavements are specifically designed to promote the infiltration of stormwater through the paving surface in order to reduce run-off volumes and to improve water quality by removing sediment and other pollutants. However, research has shown that permeable pavements can become clogged over time and this reduces their infiltration capacity. In order to assess the infiltration of permeable pavements, a variety of infiltration test procedures have been utilised in the past. However, the results have generally been inconsistent, and have shown a large variation in the range of infiltration rates measured. This paper evaluates the performance of two new experimental test methods developed in the Netherlands to more accurately determine the surface infiltration rate of existing permeable pavement installations. The two methods were the falling head full-scale method and the constant head full-scale method. Both of the new methods involved inundating a large area of the pavement in order to determine the infiltration rate through the pavement surface. Double ring infiltrometer tests were also performed to enable a comparison of the results. The study found that the new falling head full-scale testing method produced the most accurate results.
Permeable pavements are a type of SUDS that are becoming more common to allow infiltration, to minimize runoff volumes and to treat urban water stormwater by soil filtration. However, urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. This study used a full-scale infiltration test procedure to evaluate the infiltration performance of 20 permeable pavements that have been in service for over 2 to 9 years in the Netherlands. The observed infiltration capacities range between 20 and 342 mm/h.
This study describes field investigations designed to compare the infiltration capacities of 55 permeable pavement systems installed in the Netherlands and in Australia. The ages of the pavements varied from 1 to 12 years. Using infiltrometer testing, the performance of the pavements has been compared in terms of their ability to infiltrate a three month average recurrence interval storm event in the case of the Australian pavements or the minimum specification for European infiltration capacities of 97.2 mm/h for the Dutch pavements. Many of the tested pavements broadly follow a hypothetical decay curve of infiltration rate with age of pavement. However, these are clustered into two distinct groups (Dutch and Australian) with the older Australian pavements appearing to maintain higher infiltration rates relative to their age. The study has shown that the performance of the clogged permeable pavement systems was still generally acceptable, even after many years in service.