The focus of this paper is to make a comparison between five different types of conductive, heatable samples. These samples have been produced according to the five most important implementation techniques developed so far, which are knitting, weaving, embroidery, printing and nonwoven padding –and their purpose is to help decide which conductive option best accommodates a heating application. This study was divided into four major steps: choosing the adequate materials, swatch production, conductivity measurements and heating behaviour assessment. The first three methods use electro conductive wires as heating elements, the fourth uses conductive ink and the fifth uses carbon black coating. For all of them, resistance, current and heat distribution was measured. The results show that the best options for the development of a wearable textile heating system are the printed and the knitted techniques, as their mechanical strength and elasticity, is sufficiently high and the fabric/substrate structure allows the insertion/deposition of different types of heating elements.Paper from the Saxion Research Centre for Design and Technology for het 12th World Textile Conference AUTEX, June 13th-15th 2012, Zadar, Croatia.
MULTIFILE
The working hypothesis for this research project is that it is possible to develop a new functional polymer printing process for the direct application of conductive polymer onto textiles. We will use the basic extrusion technology that is currently applied in 3D printing. Thus the aim is also expanding the knowledge and knowhow base of 3D printing and make this technology applicable for deposition of functional polymers on textiles in such a way that process parameters are clearly understood, and pre-defined final product specifications can be met. Thus the challenge is to apply conductive tracks with a simple one step process that fits the current textile production processes. This means that investigating polymer deposition onto textiles of bio based polymers like PLA, doped with carbon could be a versatile route to achieving economic and sustainable conducting textiles. If the mechanism underlying the bonding of doped PLA with textiles can be controlled for processing then a new route to achieving conductive grids would be opened.Paper written by the Saxion chair Smart Functional Materials and The Unversity of Twente for and accepted by the Autex Conference 2013 (22-24 May 2013, Dresden, Germany).
MULTIFILE
Nauwkeurige en snelle detectie van verontreinigingen in voedselproducten is een noodzakelijk maar vaak lastig en technisch ingewikkeld proces. Huidige gouden standaard methoden zijn vooral gebaseerd op nauwkeurige maar dure lab technieken die verontreinigingen kunnen detecteren in verschillende samples. Snellere en goedkopere beschikbare alternatieve technieken bestaan veelal uit dipstick methoden die onvoldoende nauwkeurig zijn en slechts één stof kunnen detecteren. De recente fipronil-affaire laat nogmaals zien dat, ondanks de enorme technologische vooruitgang in detectie technologie, er nog steeds een grote behoefte is aan goedkope, snelle en betrouwbare tests voor het routinematige screenen van voedselproducten. De zuivelindustrie is zeer geïnteresseerd in een snelle, handzame en kosten-effectieve methode om verontreinigingen zoals antibiotica en bacteriën in melk, wei en babyvoeding te detecteren, omdat de huidige standaard detectie methoden, die zij gebruiken, duur en zeer tijds- en arbeids-intensief zijn. Het duurt meestal uren tot dagen voordat een betrouwbaar resultaat is verkregen. Een snellere analyse van de melk bespaart enorme kosten die nu gemaakt worden met het vernietigen van grote hoeveelheden melk (waar sporen van antibiotica worden gevonden) als gevolg van de late beschikbare uitslag. Daarnaast resulteert een snellere analyse in een snellere vrijgave voor de distributie van melkproducten en draagt zo bij tot directe besparingen in operationele kosten. In samenwerking met een aantal MKB-bedrijven en andere relevante partners zal Saxion in dit project een draagbare demonstrator realiseren voor snelle, handzame en multiplexe detectie van antibiotica zoals tetracyclines in melk, gebaseerd op een multikanaals fotonische sensor prototype.. Verschillende bestaande innovatieve technologieën zoals lab-on-a-chip, microfluidica, inkjet-printing en geïntegreerde fotonische sensoren zullen in een demonstrator geïntegreerd worden om het gestelde doel te bereiken. De draagbare demonstrator is een eerste stap richting een handheld device dat in staat is om ter plaatse, zoals bij melkveehouderijen en melkfabrieken, antibiotica in melk snel en nauwkeurig te kunnen detecteren.
Recente ontwikkelingen op het gebied van microfluïdica en microreactoren maken het mogelijk verschillende laboratoriumtesten te miniaturiseren.Deze zogenaamde “lab-on-a-chip” technologieën maken diagnostische testen buiten het laboratorium (point of care testing) mogelijk.Voor medische testen hoeven artsen geen monsters meer op te sturen naar een gespecialiseerd laboratorium en te wachten op de uitslag, de gegevens kunnen meteen gelezen worden en eventuele therapie direct gestart of daarop aangepast worden. Desondanks loopt de toepassing van de “lab-on-a-chip” technologie in de praktijk achter bij de verwachtingen. De omzetting van idee tot device vergt vaak grote investeringen. Voor het aantonen van de toepasbaarheid van een idee zijn veelal al dure investeringen in productiemiddelen en geconditioneerde ruimten noodzakelijk, terwijl het benodigde geld voor de investeringen alleen verkregen kan worden als kan worden aangetoond dat het idee werkt (“valley of death”). Printtechnologieën kunnen op dat punt een uitkomst bieden. Inkjetprinten, plasmaprinten en 3D-printen zijn relatief eenvoudige, goedkope en flexibele technieken die bijna overal kunnen worden toegepast en ze zijn ook nog eens geschikt voor biologische materialen. In dit project willen we met een combinatie van verschillende printtechnieken (inkjet-, plasma- en 3D printen) een platform genereren waarmee MKBers middels prototypes de haalbaarheid van hun idee met betrekking tot een bio(medische) sensor kunnen aantonen. Door gebruik te maken van een innovatieve detectiemethode, recent ontwikkeld aan de Technische Universiteit Eindhoven, willen we een volledig geprinte sensor produceren die met een smartphone uit te lezen is. We zullen twee praktijkgerichte toepassingen als demonstrator uitwerken. Als eerste een sensor die een ernstige longontsteking van een onschuldige verkoudheid kan onderscheiden, door detectie van het ontstekingseiwit ‘C-reactief eiwit (CRP)’. Als tweede een sensor die snel en eenvoudig de spiegels van een nieuwe oncologische biomarker kan meten en gebruikt kan worden bij de diagnostiek van bepaalde soorten tumoren en het meten van de therapeutische respons.