The model of the Best Practice Unit (BPU) is a specific form of practice based research. It is a variation of the Community of Practice (CoP) as developed by Wenger, McDermott and Snyder (2002) with the specific aim to innovate a professional practice by combining learning, development and research. We have applied the model over the past 10 years in the domain of care and social welfare in the Netherlands. Characteristics of the model are: the interaction between individual and collective learning processes, the development of (new or better) working methods, and the implementation of these methods in daily practice. Multiple knowledge sources are being used: experiential knowledge, professional knowledge and scientific knowledge. Research is serving diverse purposes: articulating tacit knowledge, documenting the learning and innovation process, systematically describing the revealed or developed ways of working, and evaluating the efficacy of new methods. An analysis of 10 different research projects shows that the BPU is an effective model.
Industrial design practice has broadened from designing (mass-)products towards more open, complex, dynamic, and networked design. Organizations are increasingly hire design professionals and turn their attention towards design as an important capability that can help them generate innovation and improve business outcomes. Organizing design beyond organizations is becoming an interdisciplinary collaboration process rather than a design creation process. This has brought change for industrial designers with regards to the design process and the application of methods. By means of process research methods, this study addresses the question ‘how does an industrial design process evolve in a broadening field of design practice?’. Based on theoretical interpretation of an empirical narrative that tells the story of a design project in healthcare, this paper provides understanding in the messy and complex progression in design processes, and unstable and unpredictable dynamics. It works towards a process innovation model that fits contemporary roles for industrial designers who are adapting their ways of working in novel design challenges.
While the concept of Responsible Innovation is increasingly common among researchers and policy makers, it is still unknown what it means in a business context. This study aims to identify which aspects of Responsible Innovation are conceptually similar and dissimilar from social- and sustainable innovation. Our conceptual analysis is based on literature reviews of responsible-, social-, and sustainable innovation. The insights obtained are used for conceptualising Responsible Innovation in a business context. The main conclusion is that Responsible Innovation differs from social- and sustainable innovation as it: (1) also considers possible detrimental implications of innovation, (2) includes a mechanism for responding to uncertainties associated with innovation and (3) achieves a democratic governance of the innovation. However, achieving the latter will not be realistic in a business context. The results of this study are relevant for researchers, managers and policy makers who are interested in responsible innovation in the business context.
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.