Research into the relationship between innovative physical learning environments (PLEs) and innovative psychosocial learning environments (PSLEs) indicates that it must be understood as a network of relationships between multiple psychosocial and physical aspects. Actors shape this network by attaching meanings to these aspects and their relationships in a continuous process of gaining and exchanging experiences. This study used a psychosocial-physical, relational approach for exploring teachers’ and students’ experiences with six innovative PLEs in a higher educational institute, with the application of a psychosocial-physical relationship (PPR) framework. This framework, which brings together the multitude of PLE and PSLE aspects, was used to map and analyse teachers’ and students’ experiences that were gathered in focus group interviews. The PPR framework proved useful in analysing the results and comparing them with previous research. Previously-identified relationships were confirmed, clarified, and nuanced. The results underline the importance of the attunement of system aspects to pedagogical and spatial changes, and of a psychosocial-physical relational approach in designing and implementing new learning environments, including the involvement of actors in the discourse within and between the different system levels. Interventions can be less invasive, resistance to processes could be reduced, and innovative PLEs could be used more effectively.
MULTIFILE
Lectorale rede
DOCUMENT
This study focuses on students’ approaches to learning, particularly in innovative learning environments. A person-oriented research perspective was chosen to search for nuances and details that add to existing knowledge on secondary students’ learning. The relation between students’ goal orientations, learning strategies, and different learning environments was investigated via questionnaires and interviews. The questionnaire study revealed four profiles of 673 students’ (meta-)cognitive learning strategies. Differences in student learning were found between students of an innovative school and students of regular schools, indicating that learning strategies are elicited by the learning environments students are confronted with. The interview study with 20 students from the innovative school illustrated their learning in learning environments typical for this school. Results revealed how students from different profiles differed in their goal orientations and learning strategies and that these differences were related to students’ need for teacher support when learning. The results of this study provide qualitative and quantitative insight in (enhancing) secondary students’ learning, doing justice to the learners as persons and individual differences.
LINK
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.
It is VHL’s mission to train high-quality, committed and innovative professionals who con-tribute to a more sustainable world , and who are able to organize and manage multi-stakeholder processes for sustainable change: graduates with transdisciplinary competences. Secondly, VHL aims to contribute to the SDG-agenda by linking its education and applied research to eight particular SDGs of which Resilient Communities is one. However, to operationalize SDGs in practice, and aligning targets and strategies of different stakeholders is difficult: ‘resilience’ and ‘sustainability’ refer to ‘wicked problems’ for which no definitive problem formulation, nor clear-cut solutions exist. Addressing wicked problems like ‘resilience’ and ‘sustainability’ requires transdisciplinary collaboration to manage and transform divergent values and conflicting interests, and to co-create sustainable innovations. This HBO postdoc views the 17 SDGs as a compass to align targets and strategies of citizens, government, civil society organizations, private sector and knowledge institutes who collaborate in Living Labs of VHL focusing on resilient communities/regions. Through spiraling action-reflection cycles, stakeholders will use the SDG compass to make success mechanisms, obstacles and trade-offs visible, assuming they stay engaged to overcome difficulties to improve interventions and innovations; this is expected to result in adapted sustainability practices and lessons learned on reaching community resilience. The postdoc’s aim is two-fold highlighting the link between research and education: (1) Design a methodology to integrate SDGs effectively in VHL’s applied research: using the SDGs as compass to improve performance and outcomes of transdisciplinary collaborations. (2) Develop a Roadmap for transdisciplinary education at course, curriculum, and institutional level with SDGs as compass. Future graduates require the competence to work together with others outside one own’s discipline, institute, culture or context. Living Labs offer a suitable learning environment to develop this competence