Vocational education and training (VET) plays a central role in preparing young people for work, developing adequate skills and responding to the labour-market needs of the economy. The transition learners are required to make from education to the workplace is a complex, and often problematic, process (Tynjälä, Välimaa, & Sarja, 2003). Studies show a gap between what is learned and what is required of competent professionals in an ever more complex world (Baartman & De Bruijn, 2011). The integration of students? learning experiences across academic and practice settings is currently of considerable interest within the educational sectors in a number of countries (Billett, 2011), among which the Netherlands. The last decade Dutch VET institutes haven been experimenting to design learning environments that cross the traditional school boundaries into working life. Zitter (2010) introduced the term hybrid learning environments . "A learning environment can be considered as a hybrid learning environment? When different formal and informal elements are woven together into coherent programmes of learning and into single learning environments, rather than a programme that combines different components with the aim of offering a more enticing menu of learning for the students" (Zitter & Hoeve, 2012 in OECD, 2013, pp. 138).
Learning environment designs at the boundary of school and work can be characterised as integrative because they integrate features from the contexts of school and work. Many different manifestations of such integrative learning environments are found in current vocational education, both in senior secondary education and higher professional education. However, limited research has focused on how to design these learning environments and not much is known about their designable elements (i.e. the epistemic, spatial, instrumental, temporal and social elements that constitute the learning environments). The purpose of this study was to examine manifestations of two categories of integrative learning environment designs: designs based on incorporation; and designs based on hybridisation. Cross-case analysis of six cases in senior secondary vocational education and higher professional education in the Netherlands led to insights into the designable elements of both categories of designs. We report findings about the epistemic, spatial, instrumental, temporal and social elements of the studied cases. Specific characteristics of designs based on incorporation and designs based on hybridisation were identified and links between the designable elements became apparent, thus contributing to a deeper understanding of the design of learning environments that aim to connect the contexts of school and work.
LINK
Hoofdstuk 2 uit Position paper Learning Communities van Netwerk learning Communities Grote maatschappelijke uitdagingen op het gebied van vergrijzing, duurzaamheid, digitalisering, segregatie en onderwijskwaliteit vragen om nieuwe manieren van werken, leren en innoveren. In toenemende mate wordt daarom ingezet op het bundelen van kennis en expertise van zowel publieke als private organisaties, die elkaar nodig hebben om te innoveren en complexe vraagstukken aan te pakken. Het concept ‘learning communities’ wordt gezien als dé oplossing om leren, werken en innoveren anders met elkaar te verbinden: collaboratief, co-creërend en contextrijk. Vanuit het Netwerk Learning Communities is een groep onafhankelijk onderzoekers van een groot aantal Nederlandse kennisinstellingen aan de slag gegaan met een kennissynthese rondom het concept ‘Learning Community’. Het Position paper is een eerste aanzet tot kennisbundeling. Een ‘levend document’ dat in de komende tijd verder aangevuld en verrijkt kan worden door onderzoekers, praktijkprofessionals en beleidsmakers.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.
It is VHL’s mission to train high-quality, committed and innovative professionals who con-tribute to a more sustainable world , and who are able to organize and manage multi-stakeholder processes for sustainable change: graduates with transdisciplinary competences. Secondly, VHL aims to contribute to the SDG-agenda by linking its education and applied research to eight particular SDGs of which Resilient Communities is one. However, to operationalize SDGs in practice, and aligning targets and strategies of different stakeholders is difficult: ‘resilience’ and ‘sustainability’ refer to ‘wicked problems’ for which no definitive problem formulation, nor clear-cut solutions exist. Addressing wicked problems like ‘resilience’ and ‘sustainability’ requires transdisciplinary collaboration to manage and transform divergent values and conflicting interests, and to co-create sustainable innovations. This HBO postdoc views the 17 SDGs as a compass to align targets and strategies of citizens, government, civil society organizations, private sector and knowledge institutes who collaborate in Living Labs of VHL focusing on resilient communities/regions. Through spiraling action-reflection cycles, stakeholders will use the SDG compass to make success mechanisms, obstacles and trade-offs visible, assuming they stay engaged to overcome difficulties to improve interventions and innovations; this is expected to result in adapted sustainability practices and lessons learned on reaching community resilience. The postdoc’s aim is two-fold highlighting the link between research and education: (1) Design a methodology to integrate SDGs effectively in VHL’s applied research: using the SDGs as compass to improve performance and outcomes of transdisciplinary collaborations. (2) Develop a Roadmap for transdisciplinary education at course, curriculum, and institutional level with SDGs as compass. Future graduates require the competence to work together with others outside one own’s discipline, institute, culture or context. Living Labs offer a suitable learning environment to develop this competence