Binnen het projectonderwijs wordt nog vaak drooggezwommen. Enerzijds door de verstrekte projectopdrachten anderzijds door de suboptimalisatie van oplossingen. Deze zijn namelijk sterk afhankelijk van de verbonden modules en docenten. In de praktijk zijn de oplossingen echter altijd een afweging van tijd, geld en kwaliteit. Onze Human Engineers leren om daar op een goede manier mee om te gaan. Dit door de integratiemodule Integrated Product Development (IPD). IPD is een multidisciplinair project waarbij studenten van verschillende Fontys Instituten werken aan de commercikle en technische uitwerking van een bedrijfsopdracht. Marktonderzoek, doelgroep bepaling en productspecificatie zijn een vast onderdeel van een IPD project evenals het ontwerpen en bouwen van een prototype en het financieel onderbouwen van een Go/NO go advies aan de ondernemer. Het project vindt plaats in het laatste onderwijssemester, net vssr het afstuderen en is dus te zien als een open project met een bedrijf als opdrachtgever. De Human Engineering studenten zijn in deze projecten de verbindende schakel. De specialisten in de projectgroepen, de technische studenten, willen nogal eens zoeken naar mooie oplossingen vooral in technische zin. Daarbij gaan ze vaak volledig voorbij aan het belang van de ondernemer (winst maken) en het belang van de klant (kwaliteit en bedieningsgemak). Ook het projectwerk heeft een enorme sprong vooruit gemaakt door het team uit te breiden met Human Engineers. De Human Engineering studenten focussen vooral ook op het halen van targets (kosten) en deadlines (tijd), het maken en nakomen van afspraken en de communicatie binnen de groep en naar buiten toe (ondernemer en klant). Huidige studenten en alumni geven aan dat het project zeer realistisch is en dat het vergelijkbaar is met problemen die ze in hun werk tegen komen. Zeker blijven doen is hun advies. Organisatorisch vergt het wel een en ander omdat er bijvoorbeeld afstemming dient te komen tussen de verschillende instituten met betrekking tot: beoordeling van de studenten, afstemmen van lesroosters en vergoeding voor docenten. Ook het onderhouden van bedrijfsrelaties om bijvoorbeeld aan de opdrachten te komen blijft een moeilijke, tijdrovende zaak.
DOCUMENT
There are currently about 6 million – mainly older – people with dementia in the European Union. With ageing, a number of sensory changes occur. Dementia syndrome exacerbates the effects of these sensory changes and alters perception of stimuli. People with dementia have an altered sensitivity for indoor environmental conditions, which can induce problematic behaviour with burdensome symptoms to both the person with dementia and the family carer. This paper, based on literature review, provides an overview of the indoor environmental parameters, as well as the integrated design and implementation of relevant building systems. The overview is presented in relation to the intrinsic ageing of senses, the responses of older people with dementia and the impact on other relevant stakeholders through the combined use of the International Classification of Functioning, Disability and Health, and the Model of Integrated Building Design. Results are presented as indicators of the basic value, functional value and economic value, as well as a synthesis of building-related solutions. Results can help designers and building services engineers to create optimal environmental conditions inside the living environments for people with dementia, and can be used to raise awareness among health care professionals about of the influence of the indoor environment on behaviour of the person with dementia.
DOCUMENT
The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us to consider the technology–human interface directly in terms of living-space, ethics and social priorities. In order to grasp this complexity, current healthcare design models need mechanisms to help prioritize the needs of the stakeholders. Assistance in this process can be derived by incorporating elements of technology philosophy into existing design models. In this article, we develop and examine the Inclusive and Integrated Health Facilities Design model (In2Health Design model) and its foundations. This model brings together three existing approaches: (i) the International Classification of Functioning, Disability and Health, (ii) the Model of Integrated Building Design, and (iii) the ontology by Dooyeweerd. The model can be used to analyze the needs of the various stakeholders, in relationship to the required performances of a building as delivered by various building systems. The applicability of the In2Health Design model is illustrated by two case studies concerning (i) the evaluation of the indoor environment for older people with dementia and (ii) the design process of the redevelopment of an existing hospital for psychiatric patients.
DOCUMENT
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.