From the publisher: "Background: The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). Main body: The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. Conclusion: The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs." Authors: Jolanda H. M. van BilsenEmail author, Edyta Sienkiewicz-Szłapka, Daniel Lozano-Ojalvo, Linette E. M. Willemsen, Celia M. Antunes, Elena Molina, Joost J. Smit, Barbara Wróblewska, Harry J. Wichers, Edward F. Knol, Gregory S. Ladics, Raymond H. H. Pieters, Sandra Denery-Papini, Yvonne M. Vissers, Simona L. Bavaro, Colette Larré, Kitty C. M. Verhoeckx and Erwin L. Roggen
LINK
12/31/2016As the population is aging rapidly, there is a strong increase in the number of individuals with chronic disease and physical limitations. The decrease in skeletal muscle mass and function (sarcopenia) and the increase in fat mass (obesity) are important contributors to the development of physical limitations, which aggravates the chronic diseases prognosis. The combination of the two conditions, which is referred to as sarcopenic obesity, amplifies the risk for these negative health outcomes, which demonstrates the importance of preventing or counteracting sarcopenic obesity. One of the main challenges is the preservation of the skeletal muscle mass and function, while simultaneously reducing the fat mass in this population. Exercise and nutrition are two key components in the development, as well as the prevention and treatment of sarcopenic obesity. The main aim of this narrative review is to summarize the different, both separate and combined, exercise and nutrition strategies so as to prevent and/or counteract sarcopenic obesity. This review therefore provides a current update of the various exercise and nutritional strategies to improve the contrasting body composition changes and physical functioning in sarcopenic obese individuals.
IL-4 and IL-13 are prototypic Th2 cytokines that generate an “alternatively activated” phenotype in macrophages. We used high-density oligonucleotide microarrays to investigate the transcriptional profile induced in human monocytes by IL-13. After 8-h stimulation with IL-13, 142 genes were regulated (85 increased and 57 decreased). The majority of these genes were related to the inflammatory response and innate immunity; a group of genes related to lipid metabolism was also identified, with clear implications for atherosclerosis. In addition to characteristic markers of alternatively activated macrophages, a number of novel IL-13-regulated genes were seen. These included various pattern recognition receptors, such as CD1b/c/e, TLR1, and C-type lectin superfamily member 6. Several components of the IL-1 system were regulated. IL-1RI, IL-1RII, and IL-1Ra were all up-regulated, whereas the IL-1β-converting enzyme, caspase 1, and IRAK-M were down-regulated. LPS-inducible caspase 1 enzyme activity was also reduced in IL-13-stimulated monocytes, with a consequent decrease in pro-IL-1β processing. These data reveal that IL-13 has a potent effect on the transcriptional profile in monocytes. The IL-13-induced modulation of genes related to IL-1 clearly highlights the tightly controlled and complex levels of regulation of the production and response to this potent proinflammatory cytokine.