Background: App-based mobile health exercise interventions can motivate individuals to engage in more physical activity (PA). According to the Fogg Behavior Model, it is important that the individual receive prompts at the right time to be successfully persuaded into PA. These are referred to as just-in-time (JIT) interventions. The Playful Active Urban Living (PAUL) app is among the first to include 2 types of JIT prompts: JIT adaptive reminder messages to initiate a run or walk and JIT strength exercise prompts during a walk or run (containing location-based instruction videos). This paper reports on the feasibility of the PAUL app and its JIT prompts.Objective: The main objective of this study was to examine user experience, app engagement, and users' perceptions and opinions regarding the PAUL app and its JIT prompts and to explore changes in the PA behavior, intrinsic motivation, and the perceived capability of the PA behavior of the participants.Methods: In total, 2 versions of the closed-beta version of the PAUL app were evaluated: a basic version (Basic PAUL) and a JIT adaptive version (Smart PAUL). Both apps send JIT exercise prompts, but the versions differ in that the Smart PAUL app sends JIT adaptive reminder messages to initiate running or walking behavior, whereas the Basic PAUL app sends reminder messages at randomized times. A total of 23 participants were randomized into 1 of the 2 intervention arms. PA behavior (accelerometer-measured), intrinsic motivation, and the perceived capability of PA behavior were measured before and after the intervention. After the intervention, participants were also asked to complete a questionnaire on user experience, and they were invited for an exit interview to assess user perceptions and opinions of the app in depth.Results: No differences in PA behavior were observed (Z=-1.433; P=.08), but intrinsic motivation for running and walking and for performing strength exercises significantly increased (Z=-3.342; P<.001 and Z=-1.821; P=.04, respectively). Furthermore, participants increased their perceived capability to perform strength exercises (Z=2.231; P=.01) but not to walk or run (Z=-1.221; P=.12). The interviews indicated that the participants were enthusiastic about the strength exercise prompts. These were perceived as personal, fun, and relevant to their health. The reminders were perceived as important initiators for PA, but participants from both app groups explained that the reminder messages were often not sent at times they could exercise. Although the participants were enthusiastic about the functionalities of the app, technical issues resulted in a low user experience.Conclusions: The preliminary findings suggest that the PAUL apps are promising and innovative interventions for promoting PA. Users perceived the strength exercise prompts as a valuable addition to exercise apps. However, to be a feasible intervention, the app must be more stable.
DOCUMENT
Just-in-time adaptive intervention (JITAI) has gained attention recently and previous studies have indicated that it is an effective strategy in the field of mobile healthcare intervention. Identifying the right moment for the intervention is a crucial component. In this paper the reinforcement learning (RL) technique has been used in a smartphone exercise application to promote physical activity. This RL model determines the ‘right’ time to deliver a restricted number of notifications adaptively, with respect to users’ temporary context information (i.e., time and calendar). A four-week trial study was conducted to examine the feasibility of our model with real target users. JITAI reminders were sent by the RL model in the fourth week of the intervention, while the participants could only access the app’s other functionalities during the first 3 weeks. Eleven target users registered for this study, and the data from 7 participants using the application for 4 weeks and receiving the intervening reminders were analyzed. Not only were the reaction behaviors of users after receiving the reminders analyzed from the application data, but the user experience with the reminders was also explored in a questionnaire and exit interviews. The results show that 83.3% reminders sent at adaptive moments were able to elicit user reaction within 50 min, and 66.7% of physical activities in the intervention week were performed within 5 h of the delivery of a reminder. Our findings indicated the usability of the RL model, while the timing of the moments to deliver reminders can be further improved based on lessons learned.
DOCUMENT
Adaptive governance describes the purposeful collective actions to resist, adapt, or transform when faced with shocks. As governments are reluctant to intervene in informal settlements, community based organisations (CBOs) self-organize and take he lead. This study explores under what conditions CBOs in Mathare informal settlement, Nairobi initiate and sustain resilience activities during Covid-19. Study findings show that CBOs engage in multiple resilience activities, varying from maladaptive and unsustainable to adaptive, and transformative. Two conditions enable CBOs to initiate resilience activities: bonding within the community and coordination with other actors. To sustain these activities over 2.5 years of Covid-19, CBOs also require leadership, resources, organisational capacity, and network capacity. The same conditions appear to enable CBOs to engage in transformative activities. How-ever, CBOs cannot transform urban systems on their own. An additional condition, not met in Mathare, is that governments, NGOs, and donor agencies facilitate, support, and build community capacities. This is the peer reviewed version of the following article: Adaptive governance by community-based organisations: Community resilience initiatives during Covid‐19 in Mathare, Nairobi. which has been published in final form at doi/10.1002/sd.2682. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
DOCUMENT
Het probleem dat deze projectaanvraag adresseert is de hoge werkdruk van zorgprofessionals in de dementiezorg. Door een stijging in het aantal ouderen met dementie, stijgt de zorgvraag, terwijl het tekort aan zorgprofessionals groeit. Door de inzet van slimme technologische innovaties zoals een Intelligente Zorgomgeving kan deze werkdruk sterk verminderd worden. Een Intelligente Zorgomgeving maakt gebruik van sensortechnieken en gebruikt Artificiële Intelligentie (AI) om gepersonaliseerde zorg te leveren door de zorgbehoefte in kaart te brengen en daarop te reageren. De Intelligente Zorgomgeving werkt daarbij samen met de zorgprofessional. Deze oplossingsrichting wordt in dit project verder uitgewerkt samen met vier zorgpartijen en drie innovatieve MKB. Aan de hand van de casus “Ondersteuning bij eten en drinken” worden Just-in-time adaptive interventions (JITAI) ontwikkeld zodat de zorgprofessional de zorgprofessional ondersteund wordt in het uitvoeren van bepaalde zorgtaken. Een voorbeeld van een interventie is het op het juiste moment geven van op de persoon aangepaste zintuigelijke prikkels (geluiden, lichten en projecties) die senioren stimuleren om te eten. Door dergelijke interventies wordt de druk op de zorgprofessional verminderd en neemt de kwaliteit van de zorg toe. Niet alleen de integratie van de AI-modules is van belang maar ook hoe de AI ‘getoond’ wordt aan de zorgprofessional. Daarom wordt er in dit project ook extra aandacht besteed aan de interactie tussen zorgprofessional en de Intelligente Zorgomgeving waardoor het gebruiksgemak wordt verhoogd en zowel cliënt als zorgprofessional een hogere mate van autonomie kunnen ervaren. Door het prototype van de Intelligente Zorgomgeving verder te ontwikkelen in zorginstellingen in samenwerking met verschillende zorgprofessionals en aandacht te besteden aan het ontwikkelen van AI en Interactie met het systeem kunnen de wensen en behoeften van de zorgprofessionals worden geïntegreerd in de Intelligente Zorgomgeving. Dit gebeurt in drie iteraties waarbij de drie opeenvolgende beschikbare living labs in toenemende mate complex en realistisch zijn.