Digitalization is the core component of future development in the 4.0 industrial era. It represents a powerful mechanism for enhancing the sustainable competitiveness of economies worldwide. Diverse triggering effects shape future digitalization trends. Thus, the main research goal in this study is to use sustainable competitiveness pillars (such as social, economic, environmental and energy) to evaluate international digitalization development. The proposed empirical model generates comprehensive knowledge of the sustainable competitiveness-digitalization nexus. For that purpose, a nonlinear regression has been applied on gathered annual data that consist of 33 European countries, ranging from 2010 to 2016. The dataset has been deployed using Bernoulli’s binominal distribution to derive training and testing samples and the entire analysis has been adjusted in that context. The empirical findings of artificial neural networks (ANN) suggest strong effects of the economic and energy use indicators on the digitalization progress. Nonlinear regression and ANN model summary report valuable results with a high degree of coefficient of determination (R2>0.9 for all models). Research findings state that the digitalization process is multidimensional and cannot be evaluated as an isolated phenomenon without incorporating other relevant factors that emerge in the environment. Indicators report the consumption of electrical energy in industry and households and GDP per capita to achieve the strongest effect.
MULTIFILE
Article for the Albanian Studies Days 2021 of the European University of Tirana. Higher education supports students in acquiring competences; a mix of knowledge, skills and attitudes. Experience has shown that it is precisely attitude and skills that ensure a better connection to the labor market, in whatever sector in whatever country.
MULTIFILE
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.
The impacts of tourism on destinations and the perceptions of local communities have been a major concern both for the industry and research in the past decades. However, tourism planning has been mainly focused on traditions that promote the increase of tourism without taking under consideration the wellbeing of both residents and visitors. To develop a more sustainable tourism model, the inclusion of local residents in tourism decision-making is vital. However, this is not always possible due to structural, economic and socio-cultural restrictions that residents face resulting to their disempowerment. This study aims to explore and interpret the formal processes around tourism decision-making and community empowerment in urban settings. The research proposes a comparative study of three urban destinations in Europe (The Hague in the Netherlands, San Sebastian in Spain and, Ioannina in Greece) that experience similar degree of tourism growth. The proposed study will use a design-based approach in order to understand tourism decision-making and what empowers or disempowers community participation within the destinations. Based on the findings of primary and secondary data, a community empowerment model will be applied in one the destinations as a pilot for resident engagement in tourism planning. The evaluation of the pilot will allow for an optimized model to be created with implications for tourism planning at a local level that can contribute to sustainable destinations that safeguard the interests of local residents and tourists.