In general, teacher educators are considered to be educational specialists whose main task is to communicate content-based concepts to prospective teachers. However, unfortunately, most studies on teacher professional development overlook this specific language-oriented aspect of content-based teaching. Therefore, we address the aforementioned research gap and argue that teacher educators’ evaluation of their language-oriented performance in educational communication enhances the quality of their content-based teaching. Accordingly, we examine how the language-oriented performance of teacher educators is evaluated by both individual teacher educators (sample size N=3) and their students (N=32) in a small-scale intervention study. The findings of the study reveal that there is a relationship between the order of application of five language focus areas (i.e., language awareness, active listening, formalizing interaction, language support, and language and learning development, as noticed by the students), and teacher educators’ ability to apply these areas in accordance with their objectives related to content-based teaching.
In today’s foreign language (FL) education, teachers universally recognise the importance of fostering students’ ability to communicate in the target language. However, the current assessments often do not (sufficiently) evaluate this. In her dissertation, Charline Rouffet aims to gather insight into the potential of assessments to steer FL teaching practices. Communicative learning objectives FL teachers fully support the communicative learning objectives formulated at national level and embrace the principles of communicative language teaching. Yet, assessments instead primarily focus on formal language knowledge in isolation (e.g., grammar rules), disconnected from real-world communicative contexts. This misalignment between assessment practices and communicative objectives hampers effective FL teaching. CBA toolbox The aim of this design-based PhD research project is to gather insight into the potential of assessments to steer FL teaching practices. To this end, tools for developing communicative classroom-based assessment (CBA) programmes were designed and implemented in practice, in close collaboration with FL teachers. Rouffet's dissertation consists of multiple studies, in which the current challenges of FL education are addressed and the usage of the CBA toolbox is investigated. Findings reveal that assessing FL competencies in a more communicative way can transform teaching practices, placing communicative abilities at the heart of FL education.
Purpose: Most speech-language pathologists (SLPs) working with children with developmental language disorder (DLD) do not perform language sample analysis (LSA) on a regular basis, although they do regard LSA as highly informative for goal setting and evaluating grammatical therapy. The primary aim of this study was to identify facilitators, barriers, and needs related to performing LSA by Dutch SLPs working with children with DLD. The secondary aim was to investigate whether a training would change the actual performance of LSA. Method: A focus group with 11 SLPs working in Dutch speech-language pathology practices was conducted. Barriers, facilitators, and needs were identified using thematic analysis and categorized using the theoretical domain framework. To address the barriers, a training was developed using software program CLAN. Changes in barriers and use of LSA were evaluated with a survey sent to participants before, directly after, and 3 months posttraining. Results: The barriers reported in the focus group were SLPs’ lack of knowledge and skills, time investment, negative beliefs about their capabilities, differences in beliefs about their professional role, and no reimbursement from health insurance companies. Posttraining survey results revealed that LSA was not performed more often in daily practice. Using CLAN was not the solution according to participating SLPs. Time investment remained a huge barrier. Conclusions: A training in performing LSA did not resolve the time investment barrier experienced by SLPs. User-friendly software, developed in codesign with SLPs might provide a solution. For the short-term, shorter samples, preferably from narrative tasks, should be considered.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.
-Chatbots are being used at an increasing rate, for instance, for simple Q&A conversations, flight reservations, online shopping and news aggregation. However, users expect to be served as effective and reliable as they were with human-based systems and are unforgiving once the system fails to understand them, engage them or show them human empathy. This problem is more prominent when the technology is used in domains such as health care, where empathy and the ability to give emotional support are most essential during interaction with the person. Empathy, however, is a unique human skill, and conversational agents such as chatbots cannot yet express empathy in nuanced ways to account for its complex nature and quality. This project focuses on designing emotionally supportive conversational agents within the mental health domain. We take a user-centered co-creation approach to focus on the mental health problems of sexual assault victims. This group is chosen specifically, because of the high rate of the sexual assault incidents and its lifetime destructive effects on the victim and the fact that although early intervention and treatment is necessary to prevent future mental health problems, these incidents largely go unreported due to the stigma attached to sexual assault. On the other hand, research shows that people feel more comfortable talking to chatbots about intimate topics since they feel no fear of judgment. We think an emotionally supportive and empathic chatbot specifically designed to encourage self-disclosure among sexual assault victims could help those who remain silent in fear of negative evaluation and empower them to process their experience better and take the necessary steps towards treatment early on.