Drawing on a multiple case study of acquisitions of UK biopharmaceutical firms, we develop an analytical framework that elucidates how key determinants of the knowledge base of science-based firms and their combinations through M&As interact and affect post-acquisition investment in the target's R&D projects. We show that two factors - the complementarity/similarity of the technology, and the complementarity/similarity of the discovery and development capabilities of the target and acquiring firm - interact to produce different outcomes in terms of investment in the acquired firm's R&D assets and for the local science and technology system.
The paper explores the process of early growth of entrepreneurial science-based firms. Drawing on case studies of British and Dutch biopharmaceutical R&D firms, we conceptualize the speed of early growth of science-based firms as the time it takes for the assembly (or combined development) of three types of critical resources - a functionally-diverse management team, early fundraising and development of technology. The development of these resources is an unfolding and interrelated process, the causal direction of which is highly ambiguous. We show the variety of paths used by science-based firms to access and develop these critical resources. The picture that emerges is that the various combinations of what we call "assisted" and "unassisted" paths combine to influence the speed of firm growth. We show how a wide range of manifestations of technology development act as signaling devices to attract funding and management, affecting the speed of firm development. We also show how the variety of paths and the speed of development are influenced by the national institutional setting.
From teh UU repository: "Background: Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients. However, there are some concerns regarding its safety and long-term efficacy. The use of non-digestible oligosaccharides might improve OIT efficacy since they are known to directly modulate intestinal epithelial and immune cells in addition to acting as prebiotics. Aim: To investigate whether a diet supplemented with plant-derived fructo-oligosaccharides (FOS) supports the efficacy of OIT in a murine cow's milk allergy model and to elucidate the potential mechanisms involved. Methods: After oral sensitization to the cow's milk protein whey, female C3H/HeOuJ mice were fed either a control diet or a diet supplemented with FOS (1% w/w) and received OIT (10 mg whey) 5 days a week for 3 weeks by gavage. Intradermal (i.d.) and intragastric (i.g.) challenges were performed to measure acute allergic symptoms and mast cell degranulation. Blood and organs were collected to measure antibody levels and T cell and dendritic cell populations. Spleen-derived T cell fractions (whole spleen-and CD25-depleted) were transferred to naive recipient mice to confirm the involvement of regulatory T cells (Tregs) in allergy protection induced by OIT + FOS. Results: OIT + FOS decreased acute allergic symptoms and mast cell degranulation upon challenge and prevented the challenge-induced increase in whey-specific IgE as observed in sensitized mice. Early induction of Tregs in the mesenteric lymph nodes (MLN) of OIT + FOS mice coincided with reduced T cell responsiveness in splenocyte cultures. CD25 depletion in OIT + FOS-derived splenocyte suspensions prior to transfer abolished protection against signs of anaphylaxis in recipients. OIT + FOS increased serum galectin-9 levels. No differences in short-chain fatty acid (SCFA) levels in the cecum were observed between the treatment groups. Concisely, FOS supplementation significantly improved OIT in the acute allergic skin response, %Foxp3+ Tregs and %LAP+ Th3 cells in MLN, and serum galectin-9 levels. Conclusion: FOS supplementation improved the efficacy of OIT in cow's milk allergic mice. Increased levels of Tregs in the MLN and abolished protection against signs of anaphylaxis upon transfer of CD25-depleted cell fractions, suggest a role for Foxp3+ Tregs in the protective effect of OIT + FOS. "
LINK