Learning mathematical thinking and reasoning is a main goal in mathematical education. Instructional tasks have an important role in fostering this learning. We introduce a learning sequence to approach the topic of integrals in secondary education to support students mathematical reasoning while participating in collaborative dialogue about the integral-as-accumulation-function. This is based on the notion of accumulation in general and the notion of accumulative distance function in particular. Through a case-study methodology we investigate how this approach elicits 11th grade students’ mathematical thinking and reasoning. The results show that the integral-as-accumulation-function has potential, since the notions of accumulation and accumulative function can provide a strong intuition for mathematical reasoning and engage students in mathematical dialogue. Implications of these results for task design and further research are discussed.
A promising contribution of Learning Analytics is the presentation of a learner's own learning behaviour and achievements via dashboards, often in comparison to peers, with the goal of improving self-regulated learning. However, there is a lack of empirical evidence on the impact of these dashboards and few designs are informed by theory. Many dashboard designs struggle to translate awareness of learning processes into actual self-regulated learning. In this study we investigate a Learning Analytics dashboard based on existing evidence on social comparison to support motivation, metacognition and academic achievement. Motivation plays a key role in whether learners will engage in self-regulated learning in the first place. Social comparison can be a significant driver in increasing motivation. We performed two randomised controlled interventions in different higher-education courses, one of which took place online due to the COVID-19 pandemic. Students were shown their current and predicted performance in a course alongside that of peers with similar goal grades. The sample of peers was selected in a way to elicit slight upward comparison. We found that the dashboard successfully promotes extrinsic motivation and leads to higher academic achievement, indicating an effect of dashboard exposure on learning behaviour, despite an absence of effects on metacognition. These results provide evidence that carefully designed social comparison, rooted in theory and empirical evidence, can be used to boost motivation and performance. Our dashboard is a successful example of how social comparison can be implemented in Learning Analytics Dashboards.
MULTIFILE
Learning Analytics en bias – Learning analytics richt zich op het meten en analyseren van studentgegevens om onderwijs te verbeteren. Bakker onderscheidt hierin verschillende niveaus, zoals student analytics en institutional analytics, en focust op inclusion analytics, waarin gekeken wordt naar kansengelijkheid. Bias – systematische vooroordelen in data – kan vooroordelen in algoritmen versterken en zo kansenongelijkheid veroorzaken. De onderzoeksmethode maakt gebruik van het 4/5-criterium, waarbij fairness in uitkomsten gemeten wordt door te kijken of de kansen voor de beschermde groep minstens 80% zijn van die van de bevoorrechte groep.Onderzoeksaanpak – Bakker gebruikt machine learning om retentie na het eerste studiejaar te voorspellen en onderzoekt vervolgens verschillen tussen groepen studenten, zoals mbo-en vwo-studenten. Hij volgt drie stappen: (1) Data voorbereiden en modellen bouwen: Data worden opgesplitst en opgeschoond om accurate voorspelmodellen te maken. (2) Variabelen analyseren: Invloed van kenmerken op uitkomsten wordt beoordeeld voor verschillende groepen. (3) Fairness berekenen: Het 4/5-criterium wordt toegepast op metrics zoals accuraatheid en statistische gelijkheid om bias en ongelijkheden te identificeren. Resultaten, aanbevelingen en vervolgonderzoek – Uit het onderzoek blijkt dat kansengelijkheid bij veel opleidingen ontbreekt, met name voor mannen en mbo-studenten, die een hogere kans op uitval hebben. Bakker adviseert sensitieve kenmerken zoals migratieachtergrond mee te nemen in analyses op basis van informed consent. Daarnaast pleit hij voor meer flexibiliteit in het beleid, geïnspireerd door maatregelen tijdens de coronacrisis, die een positief effect hadden op studiesucces.Toekomstvisie – Bakker benadrukt dat niet elke ongelijkheid het gevolg is van discriminatie en roept op tot data-informed interventies om sociale rechtvaardigheid in het onderwijs te bevorderen. Zijn methode wordt open access beschikbaar gesteld, zodat ook andere instellingen deze kunnen toepassen en kansengelijkheid systematisch en bewust kunnen onderzoeken.
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
Onbetrouwbare oogstvoorspellingen in kassen veroorzaken onnodige kosten bij telers. Fontys/Green Tech Lab (GTL) is in een eerdere studie tot de conclusie gekomen dat het meten van de mogelijke oogst middels een camera systeem mogelijk is. Dit wordt ook wel ‘scouten’ genoemd. Dit heeft men al gedaan met paprika’s en komkommers. Nu is de vraag gekomen of dit ook mogelijk is voor het telen en voorspellen van de oogst van aardbeien: Strawberry Harvest Prediction. Nu wil men dit onderzoeken door het herkennen van vruchten en groeicurves (algoritmen) niet met echte beelden van de vruchten te doen, maar met digitale beelden als een ‘Digital Twin’. In deze virtuele kas worden virtuele planten met bloemetjes, vruchten en aardbeien ‘gekweekt’ middels de groeicurve van een aardbeiplant. Hiertoe heeft men een samenwerkingsverband opgericht met Kwekerij de Kemp BV en Kwekerij VieVerde BV (oogstvoorspelling m.b.v. kunstmatige intelligentie). Het samenwerkingsverband is voor dit doel opgericht en nieuw in deze samenstelling. GTL wil in een jaar tijd een proof of concept ontwikkelen van een systeem dat met behulp van een Digital Twin oogstvoorspellingen kan doen voor de teelt van aardbeien. Door de ontwikkeling van een Digital Twin kan veel sneller (wel 100 tot 1000 keer) een algoritme ontwikkeld worden. Het project levert een proof of concept op van een virtual strawberry harvest prediction -systeem dat d.m.v. Digital Twin technieken oogstvoorspellingen doet voor de teelt van aardbeien.