After the unconditional surrender of the Third Reich in May 1945, Germany no longer existed as a sovereign, independent nation. It was occupied by the four Allied powers: France, Great Britain, the United States and the Soviet Union. When it came to the postwar European recovery, the biggest obstacle was that the economy in Germany, the dominant continental economic power before the Second World War, was at an almost complete standstill. This not only had severe consequences for Germany itself, but also had strong economic repercussions for surrounding countries, especially the Netherlands. As Germany had been the former’s most important trading partner since the middle of the nineteenth century, it was clear that the Netherlands would be unable to recover economically without a healthy Germany. However, Allied policy, especially that of the British and the Americans, made this impossible for years. This article therefore focuses on the early postwar Dutch-German trade relations and the consequences of Allied policy. While much has been written about the occupation of Germany, far less attention has been paid to the results of this policy on neighbouring countries. Moreover, the main claim of this article is that it was not Marshall Aid which was responsible for the quick and remarkable Dutch economic growth as of 1949, but the opening of the German market for Dutch exports that same year. https://doi.org/10.1515/jbwg-2018-0009 LinkedIn: https://www.linkedin.com/in/martijn-lak-71793013/
MULTIFILE
The user experience of our daily interactions is increasingly shaped with the aid of AI, mostly as the output of recommendation engines. However, it is less common to present users with possibilities to navigate or adapt such output. In this paper we argue that adding such algorithmic controls can be a potent strategy to create explainable AI and to aid users in building adequate mental models of the system. We describe our efforts to create a pattern library for algorithmic controls: the algorithmic affordances pattern library. The library can aid in bridging research efforts to explore and evaluate algorithmic controls and emerging practices in commercial applications, therewith scaffolding a more evidence-based adoption of algorithmic controls in industry. A first version of the library suggested four distinct categories of algorithmic controls: feeding the algorithm, tuning algorithmic parameters, activating recommendation contexts, and navigating the recommendation space. In this paper we discuss these and reflect on how each of them could aid explainability. Based on this reflection, we unfold a sketch for a future research agenda. The paper also serves as an open invitation to the XAI community to strengthen our approach with things we missed so far.
MULTIFILE
Artificial Intelligence systems are more and more being introduced into first response; however, this introduction needs to be done responsibly. While generic claims on what this entails already exist, more details are required to understand the exact nature of responsible application of AI within the first response domain. The context in which AI systems are applied largely determines the ethical, legal, and societal impact and how to deal with this impact responsibly. For that reason, we empirically investigate relevant human values that are affected by the introduction of a specific AI-based Decision Aid (AIDA), a decision support system under development for Fire Services in the Netherlands. We held 10 expert group sessions and discussed the impact of AIDA on different stakeholders. This paper presents the design and implementation of the study and, as we are still in process of analyzing the sessions in detail, summarizes preliminary insights and steps forward.
MULTIFILE
The ELSA AI lab Northern Netherlands (ELSA-NN) is committed to the promotion of healthy living, working and ageing. By investigating cultural, ethical, legal, socio-political, and psychological aspects of the use of AI in different decision-makingcontexts and integrating this knowledge into an online ELSA tool, ELSA-NN aims to contribute to knowledge about trustworthy human-centric AI and development and implementation of health technology innovations, including AI, in theNorthern region.The research in ELSA-NN will focus on developing and mapping ELSA knowledge around three general concepts of importance for the development, monitoring and implementation of trustworthy and human-centric AI: availability, use,and performance. These concepts will be explored in two lines of research: 1) use case research investigating the use of different AI applications with different types of data in different decision-making contexts at different time periods duringthe life course, and 2) an exploration among stakeholders in the Northern region of needs, knowledge, (digital) health literacy, attitudes and values concerning the use of AI in decision-making for healthy living, working and ageing. Specificfocus will be on investigating low social economic status (SES) perspectives, since health disparities between high and low SES groups are growing world-wide, including in the Northern region and existing health inequalities may increase with theintroduction and use of innovative health technologies such as AI.ELSA-NN will be integrated within the AI hub Northern-Netherlands, the Health Technology Research & Innovation Cluster (HTRIC) and the Data Science Center in Health (DASH). They offer a solid base and infrastructure for the ELSA-NNconsortium, which will be extended with additional partners, especially patient/citizens, private, governmental and researchrepresentatives, to have a quadruple-helix consortium. ELSA-NN will be set-up as a learning health system in which much attention will be paid to dialogue, communication and education.