Biomimicry education is grounded in a set of natural design principles common to every known lifeform on Earth. These Life’s Principles (LPs) (cc Biomimicry 3.8), provide guidelines for emulating sustainable strategies that are field-tested over nearly four billion years of evolution. This study evaluates an exercise for teaching LPs to interdisciplinary students at three universities, Arizona State University (ASU) in Phoenix, Arizona (USA), College of Charleston (CofC) in Charleston, South Carolina (USA) and The Hague University of Applied Sciences (THUAS) in The Hague (The Netherlands) during the spring 2021 semester. Students researched examples of both biological organisms and human designs exhibiting the LPs. We gauged the effectiveness of the exercise through a common rubric and a survey to discover ways to improve instruction and student understanding. Increased student success was found to be directly linked to introducing the LPs with illustrative examples, assigning an active search for examples as part of the exercise, and utilizing direct assessment feedback loops. Requiring students to highlight the specific terms of the LP sub-principles in each example is a suggested improvement to the instructions and rubric. An iterative, face-to-face, discussion-based teaching and learning approach helps overcome minor misunderstandings. Reiterating the LPs throughout the semester with opportunities for application will highlight the potential for incorporating LPs into students’ future sustainable design process. Stevens LL, Fehler M, Bidwell D, Singhal A, Baumeister D. Building from the Bottom Up: A Closer Look into the Teaching and Learning of Life’s Principles in Biomimicry Design Thinking Courses. Biomimetics. 2022; 7(1):25. https://doi.org/10.3390/biomimetics7010025
DOCUMENT
It is becoming clear that the project management practice must embrace sustainability in order to develop into a 'true profession' (Silvius et al., 2012). In project management, sustainability can be gained in both the product of the project and in the process of delivering the product. (Gareis et al., 2010) Nine sustainability principles have been identified that should be implemented in the project management practice. These nine principles are: (1) values and ethics; (2) holistic approach; (3) long term view; (4) large scale; (5) risk reduction; (6) participation; (7) accountability; (8) transparency; (9) stakeholder interest. In a case study it is researched which project and program management roles can exert an influence to have the sustainability principles implemented in the project management practice and how they can accomplish this implementation.
DOCUMENT
From the article: "Abstract, technology-enhanced learning can be used to replicate existing teaching practices, supplement existing teaching or transform teaching and/or learning process and outcomes. Enhancing workplace learning, which is integrated into higher professional education, with technology, calls for designing such transformations. Although research is carried out into different kinds of technological solutions to enhance workplace learning, we do not know which principles should guide such designs. Therefore, we carried out an explorative, qualitative study and found two such design principles for the design of technology-enhanced workplace learning in higher professional education. In this research, we focused on the students' perspective, since they are the main users of such technology when they are learning at the workplace, as part of their study in becoming lifelong learning, competent professionals."
DOCUMENT
The current western agrifood system is highly successful in providing for human needs. However, the dominant agricultural approach of up-scaling and specialisation is put under pressure by a number of developments in the global landscape. Global developments such as population growth, pollution, soil degradation and climate change, in which agriculture plays a crucial role, make the need for a transition towards a paradigm with a broader range of values evident. Niche initiatives often develop as a reaction to needs not fulfilled by the regime. Therefore, certain niches may have the potential of driving a necessary transition. This research aims to determine if permaculture, being a niche, has this potential. The main question for this research was formulated as follows: How can a production system based on permaculture principles contribute to the agrifood transition? To answer this question, relevant current trends and global developments were used as a basis for developing a future scenario. Empirical qualitative data on permaculture businesses in the Netherlands was gathered as well, of which the results were used for a determination of permaculture’s performance in this future scenario. This was done by comparing a standardised permaculture system with a conventional potato system. As a result of this comparison, the Unique Selling Points of permaculture were identified, which determine the future potential of permaculture.
DOCUMENT
The aim of this report is to give an overview of current state of the art in the occurrence and policies regarding affordable age-friendly and eco-friendly solutions in the partner countries. The report consists of the findings from the literature review, the comparative analysis and the reporting of good practices. It aims for the consortium as a whole to gain an understanding of the state of the art and on affordable age and eco-friendly solutions in partner countries and particularly the home and community fields, and to present that knowledge in the form of a written report. The literature review, the analysis of barriers and facilitators, and the survey on existing or even planning good practices in the project countries, will help the partners to build and update a strong knowledge base in these fields. To be closer to the practical issues that define the adaptability of eco and age-friendly solutions in community, the consortium decided to use mostly grey literature and websites for tools and advice, such as governmental pages. Common grey literature publication types include reports (annual, research, technical, project, etc.), working papers, government documents, white papers and evaluations, which will help all partners to reach conclusions around the common field between age and eco-friendly developments. Barriers and facilitators found in each project country will be used for stipulating the right consequence of actions needed, to propose a sound methodology that could – in combination with other actions and stakeholders – promote the implementation of age and eco-friendly principles into the public and private sphere of care for older people. Finally, the selection of good representative practices by each project country can be the basis for a report, and a publication, that depicts the level of maturity and progress of the notions of age-friendliness and eco-friendliness, as well as their impact on the care of older people.
DOCUMENT
In this study, a data feedback program to improve teachers’ science and technology (S&T) teaching skills was designed and tested. The aim was to understand whether and how the four design principles underlying this program stimulated the intended teacher support. We examined how teachers in different phases of their career applied and experienced the employed design principles’ key aspects. Eight in-service teachers and eight pre-service teachers attended the data feedback program and kept a logbook in the meantime. Group interviews were held afterwards. Findings show that applying the four employed design principles’ key aspects did support and stimulate in- and pre-service teachers in carrying out data feedback for improving their S&T teaching. However, some key aspects were not applied and/or experienced as intended by all attending teachers. The findings provide possible implications for the development and implementation of professional development programs to support in - and pre-service teachers’ S&T teaching using data feedback.
DOCUMENT
“Teaching is both an art and a science” (Harrison & Coll, 2008 p.1). Good teaching excites students and cultivates their curiosity to learn more than they are asked. But what if students’ blank faces tell you that the teaching did not land, what can you do? Using an analogy or metaphor to explain the principle helps students visualize and comprehend the knowledge of difficult, abstract concepts by making it familiar. The National Academy of Engineers issued a report in 2008 emphasizing the need for design engineers to develop 21st century skills, such as ingenuity and creativity, and to create innovative products and markets. However, designers have a hard time ignoring evident constraints on their concepts during their design process. This is especially difficult for novice designers when attempting to use analogical reasoning (Osborn, 1963; Hey et al. 2008). Hey et al. explains how the multitude of design considerations is even more difficult for novice as compared to expert designers who are more able to focus on the important features of a problem. Kolodner (1997) iterates how novice designers have difficulty sifting through the mass of information they encounter. They need help with the transfer of knowledge that analogical reasoning requires. When students can clearly extract and articulate what they have learned, this helps them to internalize this. Biomimicry education teaches the clear extraction and articulation while learning to decipher and transfer function analogies from biology to design. This transfer can also improve reasoning when solving problems (Wu and Weng, 2013), reacting to the challenge in a more ‘out-of-the-box’ manner (Yang et al. 2015). However, not being able to fully understand this “conceptual leap between biology and design” in an accurate manner, is sited as a key obstacle of this field (Rowland, 2017; Rovalo and McCardle 2019, p. 1). Therefore, didactics on how to teach this analogical leap to overcome the hurdles is essential. There is insufficient research on the effectivity of biomimicry education in design to help establish ‘best practices’. This thesis offers advice to fill this pedagogical gap to find out how to overcome the obstacle of analogical reasoning for novice designers, while practicing biomimicry. The contribution to science is a not earlier tested methodology that leads to a clearer understanding of the translation of biological strategies and mechanisms found in scientific research. This translation from biology to design in visual and textual manner, is called the Abstracted Design Principle (ADP) and is introduced and explained in detail in chapters 4, 5 and 6 of this thesis. Together with the proposed instructions, we sketch the net-gain of positive mind-set for novice designers on their path to design for a sustainable future.
DOCUMENT
Few people I know act likea magnet in the way Laura does. If you hear her speak, see her move, enjoy her smile - you can't help but want to be a part of what makes her heart beat faster. She radiates passion for her dream topic biomimicry and before you know it you're caught in that dream. From the day I met her, I was captivated by her enthusiasm and knowledge about this topic. In fact, meeting Laura made me decide to join the university as I thought: if people like Laura work at THUAS, I want to be a part of this organization'. Over the years I have seen her finish the Msc in biomimicry at Arizona State University followed by a PhD at TUDelft. And all that next to her full time job as a teacher. It's only a miracle that she still found the time to go outdoors and be in Nature. But luckily, she did as this is what nourishes her - and that nourishment is brought into the classroom affecting generations of students. I am very proud of how she builds her tribe just like Nature does; grassroots from the bottom up, not supported but also not inhibited by formal structures. In that way she truly acts as a bridge helping others to tap into Nature's wisdom. This morning I harvested the remaining vegetables from my garden and turned them into lunch. It's the second year I grow vegetables and it feels like I am only at the beginning of learning to collaborate with Nature. In Spring and Summer, Ihave witnessed in awe how seeds become seedlings which then grow into mature plants carrying fruit. The sheer wonder of Nature never ceases to amaze me, and my garden is only an attempt to be more aware of seasonal rhythms. It's Autumn right now, a time of year that invites us to go inside, reflect and let go of old baggage that no longer serves us. We'll be approaching the stage of wintering soon in which our inner journey will benefit from the darkness of wintertime introspection, along with the space to process the old, integrate learnings, and then germinate the new. Over the course of her career, Laura has gone through these seasonal cycles - reinventing herself in the past decade as a teacher, researcher and regenerative leader. One of Laura's many qualities is that she embodies three leadership characteristics derived from Nature. First, she acknowledges the importance of interconnection. Many times, we think of Nature as being separate from us, but in reality we humans are Nature. Connection with Nature enables us to think within systems and understand that we can't direct the system, but instead we're all part of multiple systems. Second, sensing the system and our part in it builds resilience. Even if things don't go as we expected or imagined, rather than reacting, we can step back and engage with more insight. Laura's adaptability to a system's needs while spotting opportunities to crack it open, is admirable. As the system is always in evolution, so is she - remarkably receptive to change even in the final stages of her career. Third, Laura creates space for people to develop and thrive, acting as multipliers of her vision and love for the natural world. In her leadership she embodies the ideal elder while being able to perceive the world through the eyes of a child - with continuous wonder for how life unfolds. This book is a bricolage of Laura's post-doc research conducted the past two years. In it you will find an array of fascinating reads and tools that help you deepen your practice as a biomimicry professional. The book is a community effort integrating tools Laura has co-created with her ecosystem as well as more in-depth readings written by some of the talents she has nourished over time. I wish for you to enjoy this careful curation of both practical as well as more conceptual contributions. May it inspire your own thriving in bringing Nature based wisdom to the core of our daily lives.
DOCUMENT
Background:Children with asthma can decrease the impact of their disease by improving their physical activity (PA). However, health care providers lack interventions for children with asthma that effectively increase their PA levels and achieve behavior change. A technology-supported approach can positively influence PA and physical functioning in children.Objective:The aims of this study were to develop a technology-supported intervention that facilitates health care providers in promoting PA for children (aged 8 to 12 years) with asthma and to systematically describe this developmental process.Methods:Intervention mapping (IM) was applied to develop a blended and technology-supported intervention in cocreation with children with asthma, their parents, and health care providers. In accordance with the IM framework, the following steps were performed: conduct a needs assessment; define the intervention outcome, performance objectives, and change objectives; select theory-based intervention methods and strategies; create components of the intervention and conduct pilot tests; create an implementation plan; and create an evaluation plan.Results:We developed the blended intervention Foxfit that consists of an app with a PA monitor for children (aged 8 to 12 years) with asthma and a web-based dashboard for their health care provider. The intervention focuses on PA in everyday life to improve social participation. Foxfit contains components based on behavior change principles and gamification, including goal setting, rewards, action planning, monitoring, shaping knowledge, a gamified story, personal coaching and feedback, and a tailored approach. An evaluation plan was created to assess the intervention’s usability and feasibility for both children and health care providers.Conclusions:The IM framework was very useful for systematically developing a technology-supported intervention and for describing the translational process from scientific evidence, the needs and wishes of future users, and behavior change principles into this intervention. This has led to the technology-supported intervention Foxfit that facilitates health care providers in promoting PA in children with asthma. The structured description of the development process and functional components shows the way behavior change techniques are incorporated in the intervention.Trial Registration:International Clinical Trial Registry Platform NTR6658; https://tinyurl.com/3rxejksf
DOCUMENT
Purpose of this studyThis study aims to better understand the deliberate design of student learning in living labs.Theoretical backgroundThe intended purpose of living labs in higher education is to integrate education, research and professional practice and thereby integrate initial learning (of students) and innovation (Schipper, Vos & Wallner, 2022). Yet, the literature shows a divide between innovation focused labs and student focused labs. Innovation focused labs hardly include students (Kalinauskaite, Brankaert, et. al., 2021; Westerlund, Leminen, & Habib, 2018), while student focused labs are framed as sec pedagogical devices, with transferable innovation positioned as a mere by-product of education (Admiraal et al., 2019; McLaughlan & Lodge, 2019). A review of the international literature on higher education living labs calls for both practice and research to be developed to realize the intended integration between initial learning and innovation in living labs (Griffioen & van Heijningen, 2023).A way to follow up on that call is to better position students in living lab practices. Students’ learning experiences in living labs are so far rather weakly framed compared to their learning in traditional, transmissive educational settings such as lectures. One of the differences is that the relationships in living labs are more open to initiative and have shown to require more autonomy in students (Barnett & Coate, 2005, p. 34). This asks of students to take on other roles and of lecturers that they tailor their pedagogical practices to student learning in the lab setting (McLaughlan & Lodge, 2019). Moreover, students and lecturers collaborate with professional partners in labs, adding to the complexity of labs as learning environments.Following Markauskaite and Goodyear (2017) can be said that living labs that include students bring together three discourses in their collaborative practices: a professional discourse linked to practice, a pedagogical discourse for learning structures and an accountability discourse for assessment. Each having their own artefacts and practices, and not all focused to student learning. In these situations, “[p]ractice is not always committed to more abstract student assignments […] and professionals do not always have time to work with students or feel lacking in capability to construct an assignment.”, and “[i]t is a challenge to create a shared interest besides the individual interests of the participants” (Huber et al. 2020, p. 5-6).This poster studies how student learning in living labs comes about in professional, pedagogical and assessment practices as perceived by students, lecturers and professionals.Research design, methodologySettingThis project takes place in the Social Professions Faculty of a single applied university in The Netherlands. Undergraduate students in different bachelor programs follow part of their education in labs. Seven social learning settings in two labs are analyzed in the project as a whole, this poster reports findings in the first lab with three social learning settings.The labs included in this multiple case study showed willing to improve their student learning through analysis and collaborative re-design. Labs were eligible when students had to collaborate with professionals and citizens to solve a real-life issue, as part of their education in the lab.SampleThe poster reports findings in the first case lab that consisted of three classes of 20 fourth year undergraduate students (N=60 in total) and their three lecturers (N=3). They collaborated with local community workers to improve the process of citizens making use of municipal public services, an assignment assigned by the regional ombudsman.MethodThe researcher participated in the lab team in the preparation and execution of the lab work and captured insights on reflective memo’s throughout the project. Based on evaluations of the previous year and ambitions for the coming year, adjustments were made to improve student learning and collaboration in the lab.Pre and post descriptions were captured of the professional, pedagogical and assessment practices in the lab, based on documents of educational and professional materials (e.g. study guide, assignments, meeting notes, flyer of national ombudsman), field notes and memo’s. Descriptions of the practices were checked with students, lecturers and professional partners.The perceptions of the practices of students, lecturers and professionals were collected after implementation through semi-structured interviews (N=3 lecturers; 9 students, and 3 professional partners). The interview guide focused on interviewees experiences and perceptions of their lab work, their collaboration and student learning in the lab, triangulating their perceptions of the professional, pedagogical and assessment practices and artefacts in the lab (Markauskaite & Goodyear, 2017).Coding and analysisIn this study, thematic analysis of the interviews is conducted (Braun & Clarke, 2022). This analysis is informed by the conceptual lens of professional practices, pedagogical practices, assessment practices, and their corresponding artefacts, in professional higher education (Markauskaite & Goodyear, 2017). Deductive coding for present and absent activities and artefacts and for the different actors’ perceptions of those activities and artefacts is complemented with inductive codes and themes.FindingsAt the time of submission, data collection in the first lab with three social learning settings is nearly finished, and implementation in a second set of four labs is work in progress. The data of the first lab will be analyzed in the period between submission and the CHER2024 conference.Practical/social implications:The proposed analysis will result in an understanding of the dynamics of practices and learning in the lab, from multiple perspectives. This understanding will be translated into design principles for balanced professional, pedagogical and assessment practices in this lab. Furthermore, this project has resulted in lab practices to improve student learning in three living labs.Originality/value of posterThis study offers a perspective on and understanding of practices and student learning in higher education living labs. It responds to a call for development of practice and research of higher education living labs, based on a review of international literature, so labs can realize the intended integration between initial learning and innovation in living labs (Griffioen & van Heijningen, 2023).Keywords: living labs, lab practices, design principles, collaboration
DOCUMENT