Purpose To determine the predictive value of quality of life for mortality at the domain and item levels. Methods This longitudinal study was carried out in a sample of 479 Dutch people aged 75 years or older living independently, using a follow-up of 7 years. Participants completed a self-report questionnaire. Quality of life was assessed with the WHOQOL-BREF, including four domains: physical health, psychological, social relationships, and environment. The municipality of Roosendaal (a town in the Netherlands) indicated the dates of death of the individuals. Results Based on mean, all quality of life domains predicted mortality adjusted for gender, age, marital status, education, and income. The hazard ratios ranged from 0.811 (psychological) to 0.933 (social relationships). The areas under the curve (AUCs) of the four domains were 0.730 (physical health), 0.723 (psychological), 0.693 (social relationships), and 0.700 (environment). In all quality of life domains, at least one item predicted mortality (adjusted). Conclusion Our study showed that all four quality of life domains belonging to the WHOQOL-BREF predict mortality in a sample of Dutch community-dwelling older people using a follow-up period of 7 years. Two AUCs were above threshold (psychological, physical health). The findings offer health care and welfare professionals evidence for conducting interventions to reduce the risk of premature death.
LINK
Abstract Purpose To determine the predictive value of quality of life for mortality at the domain and item levels. Methods This longitudinal study was carried out in a sample of 479 Dutch people aged 75 years or older living independently, using a follow-up of 7 years. Participants completed a self-report questionnaire. Quality of life was assessed with the WHOQOL-BREF, including four domains: physical health, psychological, social relationships, and environment. The municipality of Roosendaal (a town in the Netherlands) indicated the dates of death of the individuals. Results Based on mean, all quality of life domains predicted mortality adjusted for gender, age, marital status, education, and income. The hazard ratios ranged from 0.811 (psychological) to 0.933 (social relationships). The areas under the curve (AUCs) of the four domains were 0.730 (physical health), 0.723 (psychological), 0.693 (social relationships), and 0.700 (environment). In all quality of life domains, at least one item predicted mortality (adjusted). Conclusion Our study showed that all four quality of life domains belonging to the WHOQOL-BREF predict mortality in a sample of Dutch community-dwelling older people using a follow-up period of 7 years. Two AUCs were above threshold (psychological, physical health). The findings offer health care and welfare professionals evidence for conducting interventions to reduce the risk of premature death.
DOCUMENT
Objective: The aim of this cross-sectional study was to determine the associations between frailty and multimorbidity on the one hand and quality of life on the other in community-dwelling older people. Methods: A questionnaire was sent to all people aged 70 years and older belonging to a general practice in the Netherlands; 241 persons completed the questionnaire (response rate 47.5%). For determining multimorbidity, nine chronic diseases were examined by self-report. Frailty was assessed by the Tilburg Frailty Indicator, and quality of life was assessed by the World Health Organization Quality of Life Instrument—Older Adults Module. Results: Multimorbidity, physical, psychological, as well as social frailty components were negatively associated with quality of life. Multimorbidity and all 15 frailty components together explained 11.6% and 36.5% of the variance of the score on quality of life, respectively. Conclusion: Health care professionals should focus their interventions on the physical, psychological, and social domains of human functioning. Interprofessional cooperation between health care professionals and welfare professionals seems necessary to be able to meet the needs of frail older people.
DOCUMENT
Although cardiorespiratory fitness (CRF) is being recognized as an important marker of health and functioning, it is currently not routinely assessed in daily clinical practice. There is an urgent need for a simple and feasible exercise test that can validly and reliably estimate an individual’s CRF. The Steep Ramp Test (SRT) is such a practical short-time exercise test (work rate increments of 25 W/10 seconds, so the test phase will only take up to 4 minutes) on a cycle ergometer, that does not require expensive equipment or specialized knowledge, and has been found able to validly and reliably estimate an individual’s CRF. Although the SRT is already frequently used in the Netherlands to evaluate CRF, sex- and age-specific reference values for adults and elderly are lacking thus far, which seriously limits the interpretation of test results.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.
An efficient and sustainable logistics process is essential for logistics companies to remain competitive and to manage the dynamic demands and service requirements. Specifically, the first- and last-mile hub-to-hub (inter) logistics is one of the most difficult operations to manage due to low volumes, repetitive operation and short-distance transport, and relatively high waiting times. With the advancements in Industry 4.0 technologies (Internet of Things, Big Data, Cloud computing, Artificial Intelligence), the consortium partners expect that the intelligent and connected technology is a viable solution to improve operational efficiency, coordination, and sustainability of this inter-hub logistics. Despite the promising potential, the impact of technology on inter- and intra-hub (inside hub) logistics operations (such as transportation, communication, and planning) is not well-established. The focus of STEERS is to explore the real-life challenges associated with the logistics operation in a small-to-medium size logistics hub and investigate the potential of intelligent and connected technology to address such challenges. This project will investigate the requirements for the application of automated vehicles in inter-hub transportation and simultaneously explore the potential of intelligent inter-hub corridors. Additionally, inter-hub communications will also provide the opportunity to explore their potential impact on the planning and coordination of intra-hub activities, with an explicit focus on the changing role of human planners. It combines the knowledge of education and research institutes (Hogeschool van Arnhem en Nijmegen, The University of Twente and Hogeschool Rotterdam), logistics industry partners (Bolk Container Transport and Combi Terminal Twente) and public institutes (XL Business Park, Port of Twente and Regio Twente). The insights obtained in this exploratory study will serve as a foundation for the follow-up RAAK-PRO project, in which real-world demonstrators will be developed and tested inside XL Business Park.