Background: Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients’ adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. Objective: The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype?
Objective: To compare the effects of traditional mirror therapy (MT), a patient-centred teletreatment (PACT) and sensomotor exercises without a mirror on phantom limb pain (PLP). Design: Three-arm multicentre randomized controlled trial. Setting: Rehabilitation centres, hospital and private practices. Subjects: Adult patients with unilateral lower limb amputation and average PLP intensity of at least 3 on the 0–10 Numeric Rating Scale (NRS). Interventions: Subjects randomly received either four weeks of traditional MT followed by a teletreatment using augmented reality MT, traditional MT followed by self-delivered MT or sensomotor exercises of the intact limb without a mirror followed by self-delivered exercises. Main measures: Intensity, frequency and duration of PLP and patient-reported outcomes assessing limitations in daily life at baseline, 4 weeks, 10 weeks and 6 months. Results: In total, 75 patients received traditional MT (n = 25), teletreatment (n = 26) or sensomotor exercises (n = 24). Mean (SD) age was 61.1 (14.2) years and mean (SD) pain intensity was 5.7 (2.1) on the NRS. Effects of MT at four weeks on PLP were not significant. MT significantly reduced the duration of PLP at six months compared to the teletreatment (P = 0.050) and control group (P = 0.019). Subgroup analyses suggested significant effects on PLP in women, patients with telescoping and patients with a motor component in PLP. The teletreatment had no additional effects compared to self-delivered MT at 10 weeks and 6 months. Conclusion: Traditional MT over four weeks was not more effective than sensomotor exercises without a mirror in reducing PLP, although significant effects were suggested in some subgroups.
BACKGROUND: Maintaining a healthy lifestyle is important for wheelchair users' well-being, as it can have a major impact on their daily functioning. Mobile health (mHealth) apps can support a healthy lifestyle; however, these apps are not necessarily suitable for wheelchair users with spinal cord injury or lower limb amputation. Therefore, a new mHealth app (WHEELS) was developed to promote a healthy lifestyle for this population.OBJECTIVE: The objectives of this study were to develop the WHEELS mHealth app, and explore its usability, feasibility, and effectiveness.METHODS: The WHEELS app was developed using the intervention mapping framework. Intervention goals were determined based on a needs assessment, after which behavior change strategies were selected to achieve these goals. These were applied in an app that was pretested on ease of use and satisfaction, followed by minor adjustments. Subsequently, a 12-week pre-post pilot study was performed to explore usability, feasibility, and effectiveness of the app. Participants received either a remote-guided or stand-alone intervention. Responses to semistructured interviews were analyzed using content analysis, and questionnaires (System Usability Score [SUS], and Usefulness, Satisfaction, and Ease) were administered to investigate usability and feasibility. Effectiveness was determined by measuring outcomes on physical activity, nutrition, sleep quality (Pittsburgh Sleep Quality Index), body composition, and other secondary outcomes pre and post intervention, and by calculating effect sizes (Hedges g).RESULTS: Sixteen behavior change strategies were built into an app to change the physical activity, dietary, sleep, and relaxation behaviors of wheelchair users. Of the 21 participants included in the pilot study, 14 participants completed the study. The interviews and questionnaires showed a varied user experience. Participants scored a mean of 58.6 (SD 25.2) on the SUS questionnaire, 5.4 (SD 3.1) on ease of use, 5.2 (SD 3.1) on satisfaction, and 5.9 (3.7) on ease of learning. Positive developments in body composition were found on waist circumference (P=.02, g=0.76), fat mass percentage (P=.004, g=0.97), and fat-free mass percentage (P=.004, g=0.97). Positive trends were found in body mass (P=.09, g=0.49), BMI (P=.07, g=0.53), daily grams of fat consumed (P=.07, g=0.56), and sleep quality score (P=.06, g=0.57).CONCLUSIONS: The WHEELS mHealth app was successfully developed. The interview outcomes and usability scores are reasonable. Although there is room for improvement, the current app showed promising results and seems feasible to deploy on a larger scale.