Introduction: To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Methods: Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Results: Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Conclusion: Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action. © 2007 Future Medicine Ltd.
DOCUMENT
Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone. Structural modelling of the GR-Org 214007-0 binding site shows disturbance of the loop between helix 11 and helix 12 of GR, confirmed by partial recruitment of the TIF2-3 peptide. Using various cell lines and primary human cells, we show here that Org 214007-0 acts as a partial GC agonist, since it repressed inflammatory genes and was less effective in induction of metabolic genes. More importantly, in vivo studies in mice indicated that Org 214007-0 retained full efficacy in acute inflammation models as well as in a chronic collagen-induced arthritis (CIA) model. Gene expression profiling of muscle tissue derived from arthritic mice showed a partial activity of Org 214007-0 at an equi-efficacious dosage of prednisolone, with an increased ratio in repression versus induction of genes. Finally, in mice Org 214007-0 did not induce elevated fasting glucose nor the shift in glucose/glycogen balance in the liver seen with an equi-efficacious dose of prednisolone. All together, our data demonstrate that Org 214007-0 is a novel SGRMs with an improved therapeutic index compared to prednisolone. This class of SGRMs can contribute to effective anti-inflammatory therapy with a lower risk for metabolic side effects.
DOCUMENT
BACKGROUND: Glucocorticoids (GCs) control expression of a large number of genes via binding to the GC receptor (GR). Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT) and mice that have lost the ability to form GR dimers (GRdim).RESULTS: The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization.CONCLUSIONS: This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
The studies in this thesis aim to increase understanding of the effects of various characteristics of scientific news about a common chronic disease, i.e., diabetes, on the cognitive responses (e.g., emotions, attitudes, intentions) of diabetes patients. The research questions presented in this thesis are guided by the Health Belief Model, a theoretical framework developed to explain and predict healthrelated behaviours based on an individual’s beliefs and attitudes. The model asserts that perceived barriers to a recommended health behavior, advantages of the behavior, self-efficacy in executing the behavior, and disease severity and personal susceptibility to the disease are important predictors of a health behavior. Communication is one of the cues to action (i.e., stimuli) that may trigger the decision-making process relating to accepting a medical or lifestyle recommendation.
DOCUMENT
To study the ways in which compounds can induce adverse effects, toxicologists have been constructing Adverse Outcome Pathways (AOPs). An AOP can be considered as a pragmatic tool to capture and visualize mechanisms underlying different types of toxicity inflicted by any kind of stressor, and describes the interactions between key entities that lead to the adverse outcome on multiple biological levels of organization. The construction or optimization of an AOP is a labor intensive process, which currently depends on the manual search, collection, reviewing and synthesis of available scientific literature. This process could however be largely facilitated using Natural Language Processing (NLP) to extract information contained in scientific literature in a systematic, objective, and rapid manner that would lead to greater accuracy and reproducibility. This would support researchers to invest their expertise in the substantive assessment of the AOPs by replacing the time spent on evidence gathering by a critical review of the data extracted by NLP. As case examples, we selected two frequent adversities observed in the liver: namely, cholestasis and steatosis denoting accumulation of bile and lipid, respectively. We used deep learning language models to recognize entities of interest in text and establish causal relationships between them. We demonstrate how an NLP pipeline combining Named Entity Recognition and a simple rules-based relationship extraction model helps screen compounds related to liver adversities in the literature, but also extract mechanistic information for how such adversities develop, from the molecular to the organismal level. Finally, we provide some perspectives opened by the recent progress in Large Language Models and how these could be used in the future. We propose this work brings two main contributions: 1) a proof-of-concept that NLP can support the extraction of information from text for modern toxicology and 2) a template open-source model for recognition of toxicological entities and extraction of their relationships. All resources are openly accessible via GitHub (https://github.com/ontox-project/en-tox).
DOCUMENT
Objective: Product Information Leaflets (PILs) are an important source of information for patients on their medication, but may cause confusion and questions. Patients then may seek clarification, for instance from pharmacy technicians. The aim of this study was to explore which questions pharmacy technicians get about PIL-related issues, why and when, and how they handle such questions. Methods: an online survey in a panel of 785 Dutch pharmacy technicians. Key results: Net response rate was 37%. PIL-related questions frequently concerned drug actions, problems with use, side effects, intolerances and pregnancy and lactation. Patients who received generic alternatives instead of the branded product they had received previously, also came more often to pharmacy staff with PIL-related questions. The requested information could not always be found in the PIL itself, not even by the pharmacy technicians themselves. They mentioned that the PIL is not easy to read, understand or recall. Conclusions: Pharmacy staff is often approached by patients having difficulties in understanding PILs. Even pharmacy technicians find PILs difficult to read and often use other sources of information. PIL layout and contents should become more standardized and easier to read and understand.
DOCUMENT
Background: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. Methods: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. Results: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. Conclusions: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.
DOCUMENT
Abstract: Hypertension is both a health problem and a financial one globally. It affects nearly 30 % of the general population. Elderly people, aged ≥65 years, are a special group of hypertensive patients. In this group, the overall prevalence of the disease reaches 60 %, rising to 70 % in those aged ≥80 years. In the elderly population, isolated systolic hypertension is quite common. High systolic blood pressure is associated with an increased risk of cardiovascular disease, cerebrovascular disease, peripheral artery disease, cognitive impairment and kidney disease. Considering the physiological changes resulting from ageing alongside multiple comorbidities, treatment of hypertension in elderly patients poses a significant challenge to treatment teams. Progressive disability with regard to the activities of daily life, more frequent hospitalisations and low quality of life are often seen in elderly patients. There is discussion in the literature regarding frailty syndrome associated with old age. Frailty is understood to involve decreased resistance to stressors, depleted adaptive and physiological reserves of a number of organs, endocrine dysregulation and immune dysfunction. The primary dilemma concerning frailty is whether it should only be defined on the basis of physical factors, or whether psychological and social factors should also be included. Proper nutrition and motor rehabilitation should be prioritised in care for frail patients. The risk of orthostatic hypotension is a significant issue in elderly patients. It results from an autonomic nervous system dysfunction and involves maladjustment of the cardiovascular system to sudden changes in the position of the body. Other significant issues in elderly patients include polypharmacy, increased risk of falls and cognitive impairment. Chronic diseases, including hypertension, deteriorate baroreceptor function and result in irreversible changes in cerebral and coronary circulation. Concurrent frailty or other components of geriatric syndrome in elderly patients are associated with a worse perception of health, an increased number of comorbidities and social isolation of the patient. It may also interfere with treatment adherence. Identifying causes of non-adherence to pharmaceutical treatment is a key factor in planning therapeutic interventions aimed at increasing control, preventing complications, and improving long-term outcomes and any adverse effects of treatment. Diagnosis of frailty and awareness of the associated difficulties in adhering to treatment may allow targeting of those elderly patients who have a poorer prognosis or may be at risk of complications from untreated or undertreated hypertension, and for the planning of interventions to improve hypertension control.
DOCUMENT
Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiat- ing event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes. However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and infor- mation, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advance- ment of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.
DOCUMENT