Dutch-German Collaboration on Hydrogen for Energy Transition Policymakers and Authorities from the Netherlands and Germany met at Euregio Rhine-Waal in Kleve, Germany earlier this month, to advance the role of hydrogen in building a sustainable future. Prof. Sadegh Seddighi from HAN University of Applied Sciences highlighted that hydrogen production is now mature and ready for full commercialization. The discussions focused on unlocking new markets and improving the economic viability of hydrogen applications across industries. ???? Key takeaway: Regional collaboration is essential to fully harness hydrogen's potential for a greener, more connected future. ➡️ Next steps: Strengthen partnerships through pilot projects and joint research, while exploring practical applications to accelerate hydrogen's adoption and market growth.
LINK
Positive Energy Districts (PEDs) are a promising approach to urban energy transformation, aiming to optimize local energy systems and deliver environmental, social and economic benefits. However, their effectiveness and justification for investment rely on understanding the additional value they provide (additionality) in comparison to current policies and planning methods. The additionality perspective is not used yet in current evaluations of PED demonstrations and pilots. Therefore, this paper introduces the concept of additionality in the evaluation of PEDs, focusing on the additional benefits they bring and the circumstances under which they are most effective. We discuss the additionality of PEDs in addressing the challenges of climate neutrality and energy system transformation in three European cities that are funded by the European Commission’s H2020 Programme. It should be noted that given the ongoing status of these projects, the assessment is mainly based on preliminary results, as monitoring is still ongoing and quantitative results are not yet available. The paper discusses the drivers and barriers specific to PEDs, and highlights the challenges posed by technical complexities, financing aspects and social and legal restrictions. Conclusions are drawn regarding the concept of additionality and its implications for the wider development of PEDs as a response to the challenges of climate neutrality and energy system transformation in cities. We conclude that the additionality perspective provides valuable insights into the impact and potential of PEDs for societal goals and recommend this approach for use in the final evaluation of R&I projects involving PEDs using actual monitored data on PEDs.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.
In the past decade, particularly smaller drones have started to claim their share of the sky due to their potential applications in the civil sector as flying-eyes, noses, and very recently as flying hands. Network partners from various application domains: safety, Agro, Energy & logistic are curious about the next leap in this field, namely, collaborative Sky-workers. Their main practical question is essentially: “Can multiple small drones transport a large object over a high altitude together in outdoor applications?” The industrial partners, together with Saxion and RUG, will conduct feasibility study to investigate if it is possible to develop these collaborative Sky-workers and to identify which possibilities this new technology will offer. Design science research methodology, which focuses on solution-oriented applied research involving multiple iterations with rigorous evaluations, will be used to research the feasibility of the main technological building blocks. They are: • Accurate localization based on onboard sensors. • Safe and optimal interaction controller for collaborative aerial transport Within this project, the first proof-of-concepts will be developed. The results of this project will be used to expand the existing network and formulate a bigger project to address additional critical aspects in order to develop a complete framework for collaborative drones.
Climate change has impacted our planet ecosystem(s) in many ways. Among other alterations, the predominance of long(er) drought periods became a point of concern for many countries. A good example is The Netherlands, a country known by its channels and abundant surface water, which has listed “drought effect mitigation” among the different topics in the last version of its “Innovation Agenda” (Kennis en Innovatie Agenda, KIA). There are many challenges to tackle in such scenario, one of them is solutions for small/decentralized communities that suffer from dry-up of surface reservoirs and have no groundwater source available. Such sites are normally far from big cities and coastal zones, which impair the supply via distribution networks. In such cases, Atmospheric Water Generation (AWG) technologies are a plausible solution. These systems have relatively small production rates (few m3 per day), but they can still provide enough volume for cities with up to 100k inhabitants. Despite having real scale systems already installed in different locations worldwide, most systems are between TRL 5 and 6. Thus need further development. SunCET proposes an in-situ evaluation of an AWG system (WaterWin) developed by two different Dutch companies (Solaq and Sustainable Eyes) in the Brazilian semi-arid state of Ceará. The cooperation with NHL Stenden will provide the necessary expertise, analytical and technical support to conduct the tests. The state government of Ceará built an infrastructure to support the realization of in-situ tests, as they want to further accelerate technology implementation in the state. Such structure will make it possible to share costs and decrease total investments for the SMEs. Finally, it is also intended to help establishing partnerships between Dutch SMEs and Brazilian end users, i.e. municipalities of the Ceará state and small agriculture companies in the region.