Research Questions • What are the characteristics of vulnerable populations in The Hague? • What are their needs in order to adapt to heatwaves, and how do they cope? • What are existing sustainable solutions for protecting vulnerable populations? • How can the municipality of The Hague increase urban resilience with regards to heat?
DOCUMENT
While the optimal mean annual temperature for people and nations is said to be between 13 °C and 18 °C, many people live productive lives in regions or countries that commonly exceed this temperature range. One such country is Australia. We carried out an Australia-wide online survey using a structured questionnaire to investigate what temperature people in Australia prefer, both in terms of the local climate and within their homes. More than half of the 1665 respondents (58%) lived in their preferred climatic zone with 60% of respondents preferring a warm climate. Those living in Australia's cool climate zones least preferred that climate. A large majority (83%) were able to reach a comfortable temperature at home with 85% using air-conditioning for cooling. The preferred temperature setting for the air-conditioning devices was 21.7 °C (SD: 2.6 °C). Higher temperature set-points were associated with age, heat tolerance and location. The frequency of air-conditioning use did not depend on the location but rather on a range of other socio-economic factors including having children in the household, the building type, heat stress and heat tolerance. We discuss the role of heat acclimatisation and impacts of increasing air-conditioning use on energy consumption.
MULTIFILE
This applied research project aims to generate a better understanding of the effects of heatwaves on vulnerable population groups in the municipality of The Hague, and suggests ways in which the municipality can help such groups to cope with these heatwaves. The research was performed as a cooperation between The Hague University of Applied Sciences (THUAS), the International Institute of Social Studies (ISS, Erasmus University Rotterdam) and the International Centre for Frugal Innovation (ICFI, Leiden-Delft-Erasmus Universities). Heatwaves constitute an important yet often overlooked part of climate change and their impacts qualify as disasters. According to the World Disasters Report 2020, the three heatwaves affecting Belgium, France, Germany, Italy, the Netherlands, Spain, Switzerland and the UK in the summer of 2019 caused 3,453 deaths.1 2020 was a new record year for the Netherlands because it was the first time that a heatwave included five days in a row during which the temperature reached 35 degrees or more. In addition, 40 degrees was measured for the first time, and periods of tropical days and nights are generally getting longer. Most importantly, this trend is accelerating faster than the climate change models are predicting.2 In addition, the COVID-19 pandemic is compounding the effect of heatwaves, as vulnerable individuals may be reluctant to seek cool spaces out of fear of infection. Already in 2006, the Netherlands ranked near the top of the global disaster index due to the number of excess deaths that could be attributed to the heatwave. In the same year, the EU published the first climate strategy in which heat is recognised as a priority. In 2008, the Netherlands developed its first national heat plan.4 The municipality of The Hague has a municipal climate adaptation strategy and has developed a draft local heat plan in the summer of 2021, which was published in February 2022 . This research was not meant to be and was not set up as an evaluation of the current heat plan, which has not yet been activated. At the level of municipalities and cities, the concept of urban resilience is key. It refers to “the capacity of individuals, communities, institutions, businesses, and systems within a city to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience”. Heatwaves clearly constitute acute shocks which are rapidly developing into chronic stresses. In turn, heatwaves also exacerbate the chronic stresses that are already there, i.e. existing chronic stresses also lead to greater impact of a heatwave. In other words, there are negative interaction effects. Addressing these effects requires overcoming the silo approach to urban governance, in which different municipal departments as well as other stakeholders (such as the Red Cross, housing corporations, tenants’ associations, care organisations, entrepreneurs etc.) each address different parts of the problem, rather than doing so in an integrated and inclusive manner. The dataset for this study is archived in DANS Easy: https://doi.org/10.17026/dans-xeb-h8uk
MULTIFILE
Participatory energy planning at the local level engages citizens, builds legitimacy and trust, and increases successful implementation of renewable energies. In the context of heat planning, technology choices highly vary depending on the local context and social conditions and including social input therefore benefits the planning process. This research adds to the current literature, which lacks concrete examples and verified approaches that clarify what the guiding principles of participatory energy planning are and how the opportunities and challenges can be dealt with. This paper elaborates on these opportunities and challenges and proposes a process design, using multiple tools (a survey, an Information-choice Questionnaire, and workshops) to collect the social input that is necessary to make technology choices in a participatory manner. The process design is applied and tested in a case study of a Dutch neighbourhood and lessons learned are drafted as a basis for further research.
DOCUMENT
The liveability of cities worldwide is under threat by the predicted increase in intensity and frequency of heatwaves and the absence of a clear spatial overview of where action to address this. Heat stress impairs vital urban functions (Böcker and Thorsson 2014), hits the local economy (Evers et al. 2020), and brings risks for citizens’ health (Ebi et al. 2021). The ongoing densification of cities may escalate the negative consequences of heat, while rising climate adaptation ambitions require new pathways to (re)design public places for a warmer climate. Currently, policy makers and urban planners rely on remote sensing and modelling to identify potential heat stress locations, but thermal comfort models alone fail to consider socio-environmental vulnerabilities and are often not applicable in different countries (Elnabawi and Hamza 2020).In the Cool Towns Interreg project, researchers collaborated with municipalities and regions to model urban heat stress in nine North-Western European cities, to find vulnerabilities and to measure on the ground (see Spanjar et al. 2020 for methodology) the thermal comfort of residents and the effectiveness of implemented nature-based solutions. Using the Physiological Equivalent Temperature (PET) index, several meteorological scenarios were developed to show the urban areas under threat. The PET maps are complemented by heat vulnerability maps showing key social and environmental indicators. Coupled with local urban planning agendas, the maps allowed partner cities to prioritize neighbourhoods for further investigation. To this end, community amenities and slow traffic routes were mapped on top of the PET maps to identify potential focus areas.A comparative analysis of the collated maps indicates certain spatial typologies, where vital urban activities are often influenced by heat stress, such as shopping areas, mobility hubs, principal bicycle and pedestrian routes. This project has resulted in the development of a multi-level Thermal Comfort Assessment (TCA), highlighting locations where vulnerable user groups are exposed to high temperatures. Standardized for European cities, it is a powerful tool for policy makers and urban planners to strategically identify heat stress risks and prioritize locations for adapting to a changing climate using the appropriate nature-based solutions.
MULTIFILE
There is an ongoing transition towards renewable energy sources in order to combat climate change. National power grids are suffering due to the rapid introduction of new energy sources and have other disadvantages. Local Energy Systems (LESs) are a beneficial example of an off-grid energy systems that can aid the energy transition. LESs are community driven and require participating and steering members. This can be achieved through empowering end-users to become active participants or steerers. End-users can be empowered to become an active participant through engagement with energy management activities. This does not work for empowering to steer, which begs the question, how to empower end-users or participants to become steerers in Local Energy Systems. Through a literature review this study explores the importance of establishing a group containing steerers with diverse skills, strong leadership, and engagement with the environment and community. Additionally, this study identifies the strategy that empowers end-users to steer. Which is training technological and managemental skills; and training capabilities in establishing relations with local participants and intermediary organisations. To apply these findings more precisely a secondary analysis is conducted on a survey with 599 participants. The original study researched willingness to participate in LESs, however the secondary analysis establishes three important factors to predict willingness to steer. These are energy independence, community trust, and community resistance. Additionally, men with a high level of education are most willing to become steerers per default, thus different demographics generally require more empowerment.
DOCUMENT
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
DOCUMENT
In this opinion piece, we establish some key priorities for evidence-based governance to address the increasing threat of heatwave events in Europe, particularly for human health. According to the European Environment Agency (EEA) [1], Europe is warming faster than the global average. The year 2020 was the warmest year in Europe since the instrumental records began, with the range of anomaly between 2.53˚C and 2.71˚C above the pre-industrial levels. Particularly high warming has been observed over eastern Europe, Scandinavia and the eastern part of the Iberian Peninsula. Climate change-related heatwaves are becoming a significant threat to human health and necessitate early action [2]. While financial resources and technological capacities are crucial to aid (local) governments in adapting to and proactively mitigating the threats posed by heatwaves, they are not enough [3]. Akin to flood responses, European countries must prepare for large-scale evacuations of vulnerable citizens (especially older adults living alone) from their homes. Here, we outline three priorities for Europe in the governance domain. These priorities encompass developing and rolling-out heat-health action plans, a stronger role for European Union institutions in regional heatwave governance, and creating a sense of urgency by developing innovative ways of communicating research findings to relevant policy makers and citizens.
DOCUMENT
The adaptation of urbanised areas to climate change is currently one of the key challenges in the domain of urban policy. The diversity of environmental determinants requires the formulation of individual plans dedicated to the most significant local issues. This article serves as a methodic proposition for the stage of retrieving data (with the PESTEL and the Delphi method), systemic diagnosis (evaluation of risk and susceptibility), prognosis (goal trees, goal intensity map) and the formulation of urban adaptation plans. The suggested solution complies with the Polish guidelines for establishing adaptation plans. The proposed methodological approach guarantees the participation of various groups of stakeholders in the process of working on urban adaptation plans, which is in accordance with the current tendencies to strengthen the role of public participation in spatial management. https://doi.org/10.12911/22998993/81658
MULTIFILE
Energy planning in the built environment increasingly takes place in local settings. Suitable planning models should therefore be able to capture local dynamics, such as stakeholder behaviour, resource availability and building characteristics. In relation to the key challenges of energy transition in the built environment, building efficiency and renewable heating, little attention has been paid to the model characteristics needed to address these challenges. This paper analyses the characteristics of available models from the scientific community and the professional practice. Secondly, the paper reviews modelling approaches for integrating social factors within techno-economic models, as many local dynamics have a non-technical nature. Based on the gaps identified in the analysis, an analytical framework is proposed for local energy planning models for the built environment. Building characteristics, social context factors, temporal dynamics and spatial characteristics have been identified as key building blocks for a new modelling approach. To be able to deal with the socio-technical context, an integrated, socio-technical approach is suggested. This model collaboration, consisting of model calculations and empirical and participatory methods, will be capable of better supporting decision-making in a local, multistakeholdercontext.
LINK