BackgroundConfounding bias is a common concern in epidemiological research. Its presence is often determined by comparing exposure effects between univariable- and multivariable regression models, using an arbitrary threshold of a 10% difference to indicate confounding bias. However, many clinical researchers are not aware that the use of this change-in-estimate criterion may lead to wrong conclusions when applied to logistic regression coefficients. This is due to a statistical phenomenon called noncollapsibility, which manifests itself in logistic regression models. This paper aims to clarify the role of noncollapsibility in logistic regression and to provide guidance in determining the presence of confounding bias.MethodsA Monte Carlo simulation study was designed to uncover patterns of confounding bias and noncollapsibility effects in logistic regression. An empirical data example was used to illustrate the inability of the change-in-estimate criterion to distinguish confounding bias from noncollapsibility effects.ResultsThe simulation study showed that, depending on the sign and magnitude of the confounding bias and the noncollapsibility effect, the difference between the effect estimates from univariable- and multivariable regression models may underestimate or overestimate the magnitude of the confounding bias. Because of the noncollapsibility effect, multivariable regression analysis and inverse probability weighting provided different but valid estimates of the confounder-adjusted exposure effect. In our data example, confounding bias was underestimated by the change in estimate due to the presence of a noncollapsibility effect.ConclusionIn logistic regression, the difference between the univariable- and multivariable effect estimate might not only reflect confounding bias but also a noncollapsibility effect. Ideally, the set of confounders is determined at the study design phase and based on subject matter knowledge. To quantify confounding bias, one could compare the unadjusted exposure effect estimate and the estimate from an inverse probability weighted model.
MULTIFILE
Robots are increasingly used in a variety of work environments, but surprisingly little attention has been paid to how robots change work. In this comparative case study, we explore how robotization changed the work design of order pickers and order packers in eight logistic warehouses. We found that all warehouses robotized tasks based on technological functionality to increase efficiency, which sometimes created jobs consisting of ‘left-over tasks’. Only two warehouses used a bottom-up approach, where employees were involved in the implementation and quality of work was considered important. Although the other warehouses did not, sometimes their work design still benefitted from robotization. The positive effects we identified are reduced physical and cognitive demands and opportunities for upskilling. Warehouses that lack attention to the quality of work may risk ending up with the negative effects for employees, such as simplification and intensification of work, and reduced autonomy. We propose that understanding the consequences of robots on work design supports HR professionals to help managing this transition by both giving relevant input on a strategic level about the importance of work design and advocating for employees and their involvement.
DOCUMENT
The need to better understand how to manage the real logistics operations in Schiphol Airport, a strategic hub for the economic development of the Netherlands, created the conditions to develop a project where academia and industry partnered to build a simulation model of the Schiphol Airport Landside operations. This paper presents such a model using discrete-event simulation. A realistic representation of the open road network of the airport as well as the (un)loading dock capacities and locations of the five ground handlers of Schiphol Airport was developed. Furthermore, to provide practitioners with applicable consolidation and truck-dispatching policies, some easy-to-implement rules are proposed and implemented in the model. Preliminary results from this model show that truck-dispatching policies have a higher impact than consolidation policies in terms of both distance travelled by cooperative logistic operators working within the airport and shipments’ average flow time. Furthermore, the approach presented in this study can be used for studying similar megahubs.
DOCUMENT
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
In line with European sustainability goals, small and medium sized enterprises (SMEs) in the Dutch automotive aftermarket face the challenge of maintaining competitiveness while transitioning to circular business models. These models, supported by EU policies such as the Circular Economy Action Plan and the European Green Deal, drive innovation in product lifecycle management, recycling, and sustainability. However, as SMEs adapt to these changes, they must also navigate the growing competition from imported Chinese electric vehicles (EVs), which bring both opportunities and risks. Logistics plays a critical role in this transition, as optimizing supply chains, enhancing resource efficiency, and minimizing waste are essential for achieving circularity. Will the Chinese car manufacturers move their value chain to Europe? Or will they further localize in aftersales businesses? Either scenario would affect a chain of SMEs in automotive aftermarket. Focusing on the auto parts SMEs in the Brainport region, this research examines how SMEs can stay competitive by leveraging logistics strategies to support circular practices, and navigate the challenges posed by the influx of Chinese EVs while remaining resilient and adaptable in the automotive aftermarket value chain. Together with our consortium partners, we help the regional SMEs in the automotive aftermarket with: 1. Mapping out logistical challenges and objectives, 2. Risk mitigation and demand planning, 3. Strategic supply chain development. Involving Fontys International Business graduation projects on data analysis, this project combines quantitative and qualitative insights to examine the transition of automotive aftermarket to an EV-dominated future. The SMEs in our consortium network are drive to adapt to the evolving landscape by investing in new measures. Through scenario assessment, we help them with scenario strategies in circular transition. For a broader impact, this project brings SMEs, branch and public organizations together and presents shared responsibilities in creating a resilient supply chain.